Ni0.9Mn0.1Fe2O4 nanoparticles preparation and sunlight-utilized photocatalytic activity

  • O. RainaEmail author
  • B. Prakash


The metal hydrazine precursor of Ni0.9Mn0.1Fe2O4 nanoparticles was prepared through co-precipitation technique. Infrared spectrum of the precursor was showed the bridging bidentate nature of hydrazine. Multistep endothermic mass loss was observed from the thermogravimetric–differential thermogravimetric curves of the precursor. Ni0.9Mn0.1Fe2O4 nanoparticles synthesized from the precursor using thermal decomposition technique were characterized by infrared spectroscopy, energy-dispersive spectroscopy, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry and UV-diffuse reflectance spectroscopy which proposed the phase structure, morphology, magnetic and optical properties. An effective photocatalytic activity has shown by Ni0.9Mn0.1Fe2O4 nanoparticles on Congo red, malachite green, methylene blue, methyl red, rhodamine B and rose bengal under direct sunlight at different time intervals. The nanoparticles were magnetically separated and showed good recycling ability.


Hydrazine Ni0.9Mn0.1Fe2O4 Photocatalytic activity Methylene blue Recycling 



The authors are thankful to Kongunadu Arts and Science College, Coimbatore, for providing facilities. We acknowledge the provision of the necessary facilities by SAIF Cochin, IIT Madras, and Karunya Institute of Technology and Sciences, Coimbatore. One of the authors acknowledge Sri Ramakrishna Engineering College, Coimbatore.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    M. Balakrishnan, S.A. Antony, S. Gunasekaran, R.K. Natarajan, Indian J. Sci. Technol. 1, 1 (2008)Google Scholar
  2. 2.
    H. Wang, T. Wang, B. Zhang, F. Li, B. Toure, I.B. Omosa, Clean Soil Air Water 42, 1029 (2014)CrossRefGoogle Scholar
  3. 3.
    Z. Carmen, S. Daniela, in Organic Pollutants Ten Years After the Stockholm Convention-Environmental and Analytical Update, ed. By T. Puzyn (In Tech, 2012), p. 55Google Scholar
  4. 4.
    R. Kant, Nat. Sci. 4, 22 (2012)Google Scholar
  5. 5.
    H. Zhou, D.W. Smith, J. Environ. Eng. Sci. 1, 247 (2002)CrossRefGoogle Scholar
  6. 6.
    X. Qu, P.J.J. Alvarez, Q. Li, Water Res. 47, 3931 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Ahmad, S.H.M. Setapar, S.C. Chuo, A. Khatoon, W.A. Wani, R. Kumar, RSC Adv. 5, 30801 (2015)CrossRefGoogle Scholar
  8. 8.
    M.I. Litter, Appl. Catal. B Eniviron. 23, 89 (1999)CrossRefGoogle Scholar
  9. 9.
    E. Casbeer, V.K. Sharma, X.-Z. Li, Sep. Purif. Technol. 87, 1 (2012)CrossRefGoogle Scholar
  10. 10.
    N. Masunga, O.K. Mmelesi, K.K. Kefeni, B.B. Mamba, J. Environ. Chem. Eng. 7, 3 (2019)CrossRefGoogle Scholar
  11. 11.
    O. Raina, R. Manimekalai, Res. Chem. Int. 44, 5941 (2018)CrossRefGoogle Scholar
  12. 12.
    C. Barathiraja, A. Manikandan, A.M.U. Mohideen, S. Jayasree, S.A. Antony, J. Supercond. Nov. Magn. 29, 477 (2016)CrossRefGoogle Scholar
  13. 13.
    G. Mathubala, A. Manikandan, S.A. Antony, P. Ramar, J. Mol. Struct. 1113, 79 (2016)CrossRefGoogle Scholar
  14. 14.
    L.G.V. Uitert, J. Chem. Phys. 23, 306 (1956)CrossRefGoogle Scholar
  15. 15.
    S. Gubbala, H. Nathani, K. Koizol, R.D.K. Misra, Phys. B 348, 317 (2004)CrossRefGoogle Scholar
  16. 16.
    E.R. Kumar, A.S. Kamzin, T. Prakash, J. Magn. Magn. Mater. 378, 389 (2015)CrossRefGoogle Scholar
  17. 17.
    Z. Zhang, Q. Tan, Z. Zhong, F. Su, RSC Adv. 5, 40018 (2015)CrossRefGoogle Scholar
  18. 18.
    B.V. Tirupanyam, C. Srinivas, S.S. Meena, S.M. Yusuf, A.S. Kumar, D.L. Sastry, J. Magn. Magn. Mater. 392, 101 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Khan, J. Duan, Y. Chen, H. Yao, S. Lyu, H. Shou, J. Alloys Compd. 701, 147 (2017)CrossRefGoogle Scholar
  20. 20.
    M.K. Zate, S.M.F. Shaikh, V.V. Jadhav, K.K. Tehare, S.S. Kolekar, R.S. Mane, J. Anal. Appl. Pyrolysis 116, 177 (2015)CrossRefGoogle Scholar
  21. 21.
    E.R. Kumar, P.S.P. Reddy, G.S. Devi, S. Sathiyaraj, J. Magn. Magn. Mater. 398, 281 (2016)CrossRefGoogle Scholar
  22. 22.
    T.F. Marinca, I. Chicinaş, O. Isnard, B.V. Neamţu, Ceram. Int. 42, 4754 (2016)CrossRefGoogle Scholar
  23. 23.
    R.S. Pandav, R.P. Patil, S.S. Chavan, I.S. Mulla, P.P. Hankare, J. Magn. Magn. Mater. 417, 407 (2016)CrossRefGoogle Scholar
  24. 24.
    A. Braibanti, F. Dallavalle, M.A. Pellinghelli, E. Leporati, Inorg. Chem. 7, 1430 (1968)CrossRefGoogle Scholar
  25. 25.
    T. Premkumar, S. Govindarajan, A.E. Coles, C.A. Wight, J. Phys. Chem. B 109, 6126 (2005)CrossRefGoogle Scholar
  26. 26.
    K. Thangavelu, K. Parameswari, K. Kuppusamy, Y. Haldorai, Mater. Lett. 65, 1482 (2011)CrossRefGoogle Scholar
  27. 27.
    S.G. Gawas, V.M.S. Verenkar, Thermochim. Acta 605, 16 (2015)CrossRefGoogle Scholar
  28. 28.
    P.P.G. Desai, V.M.S. Verenkar, J. Mater. Sci. Mater. Electron. 29, 6924 (2018)CrossRefGoogle Scholar
  29. 29.
    A.I. Vogel, Vogel’s Text book of Quantitative Chemical Analysis, 5th edn. (Longmann, London, 1989), p. 384Google Scholar
  30. 30.
    M.G. Naseri, E.B. Saion, M. Hashim, A.H. Shaari, H.A. Ahangar, Solid State Commun. 151, 1031 (2011)CrossRefGoogle Scholar
  31. 31.
    U.B. Gawas, V.M.S. Verenkar, Thermochim. Acta 556, 41 (2013)CrossRefGoogle Scholar
  32. 32.
    R.C.C. Monteiro, A.A.S. Lopes, M.M.R.A. Lima, J.P.B. Veiga, J. Non-Cryst. Solids 491, 124 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistrySri Ramakrishna Engineering CollegeCoimbatoreIndia
  2. 2.PG and Research Department of ChemistryKongunadu Arts and Science CollegeCoimbatoreIndia

Personalised recommendations