A hybrid composite of rhenium complexes covalently grafted on reduced graphene oxide/hydrogenated TiO2 as an efficient catalyst for CO2 reduction under visible light

  • Chen-Xi Tian
  • Shi-Cong CuiEmail author
  • Xiang-Yu Liu
  • Jin-Gang LiuEmail author


The photocatalytic conversion of CO2 to fuels by light is of research interest owing to its relevance to environment and energy concerns. In this work, a hybrid H-TiO2–rGO–Re(bpy)(CO)3Cl composite consisting of a rhenium 2,2′-bipyridine compound, Re(bpy)(CO)3Cl, which was covalently grafted on reduced graphene oxide (rGO) and hydrogenated TiO2 (H-TiO2) was prepared. H-TiO2–rGO–Re(bpy)(CO)3Cl demonstrated high efficiency for visible light photo-conversion of CO2 into CO in triethanolamine/N,N-dimethylformamide (V:V = 1:9) solution with total turnover numbers larger than 580. In addition, the composite showed high stability with no leveling-off tendency after four catalytic experimental runs. The experimental results indicate that the suitable assembly of the Re(bpy)(CO)3Cl, rGO, and H-TiO2 components in the H-TiO2–rGO–Re(bpy)(CO)3Cl composite is necessary for the observed high performance of the catalyst for CO2 reduction under visible light irradiation.

Graphic abstract


Hydrogenated TiO2 Rhenium complex Reduced graphene oxide Covalent grafting CO2 photoreduction 



This study was financially supported by the NSF of China (Nos. 21571063 to SCC, 21571062 to JGL), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning to JGL.

Supplementary material

11164_2019_4028_MOESM1_ESM.pdf (802 kb)
Supplementary material 1 (PDF 802 kb)


  1. 1.
    M. Asadi, K. Kim, C. Liu, A.V. Addepalli, P. Abbasi, P. Yasaei, P. Phillips, A. Behranginia, J.M. Cerrato, R. Haasch, P. Zapol, B. Kumar, R.F. Klie, J. Abiade, L.A. Curtiss, A. Salehi-Khojin, Science 353, 467 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    R. Richter, S. Caillol, J. Photochem. Photobiol. C Photochem. Rev. 12, 1 (2011)CrossRefGoogle Scholar
  3. 3.
    K. Li, X. An, K.H. Park, M. Khraisheh, J. Tang, Catal. Today 224, 3 (2014)CrossRefGoogle Scholar
  4. 4.
    H. Takeda, O. Ishitani, Coord. Chem. Rev. 254, 346 (2010)CrossRefGoogle Scholar
  5. 5.
    K. Kobayashi, T. Kikuchi, S. Kitagawa, K. Tanaka, Angew. Chem. Int. Ed. 53, 11813 (2014)CrossRefGoogle Scholar
  6. 6.
    Z. Guo, S. Cheng, C. Cometto, E. Anxolabéhère-Mallart, S.-M. Ng, C.-C. Ko, G. Liu, L. Chen, M. Robert, T.-C. Lau, J. Am. Chem. Soc. 138, 9413 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    S.L. Chan, T.L. Lam, C. Yang, S.C. Yan, N.M. Cheng, Chem. Commun. 51, 7799 (2015)CrossRefGoogle Scholar
  8. 8.
    H. Takeda, K. Ohashi, A. Sekine, O. Ishitani, J. Am. Chem. Soc. 138, 4354 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    A. Nikokavoura, C. Trapalis, Appl. Surf. Sci. 391, 149 (2017)CrossRefGoogle Scholar
  10. 10.
    S. Girish Kumar, K.S.R. Koteswara Rao, Appl. Surf. Sci. 355, 939 (2015)CrossRefGoogle Scholar
  11. 11.
    H. Tsuneoka, K. Teramura, T. Shishido, T. Tanaka, J. Phys. Chem. C 114, 8892 (2010)CrossRefGoogle Scholar
  12. 12.
    P. Li, J. Xu, H. Jing, C. Wu, H. Peng, J. Lu, H. Yin, Appl. Catal. B Environ. 156–157, 134 (2014)CrossRefGoogle Scholar
  13. 13.
    K. Teramura, S. Okuoka, H. Tsuneoka, T. Shishido, T. Tanaka, Appl. Catal. B Environ. 96, 565 (2010)CrossRefGoogle Scholar
  14. 14.
    Y. Tamaki, K. Koike, T. Morimoto, Y. Yamazaki, O. Ishitani, Inorg. Chem. 52, 11902 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Q. Zhai, S. Xie, W. Fan, Q. Zhang, Y. Wang, W. Deng, Y. Wang, Angew. Chem. Int. Ed. 52, 5776 (2013)CrossRefGoogle Scholar
  16. 16.
    W. Wang, W. An, B. Ramalingam, S. Mukherjee, D.M. Niedzwiedzki, S. Gangopadhyay, P. Biswas, J. Am. Chem. Soc. 134, 11276 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    E.-G. Ha, J.-A. Chang, S.-M. Byun, C. Pac, D.-M. Jang, J. Park, S.O. Kang, Chem. Commun. 50, 4462 (2014)CrossRefGoogle Scholar
  18. 18.
    D. Won, J. Lee, H. Cheong, M. Cho, W. Jung, H. Son, C. Pac, S.O. Kang, Faraday Discuss. 198, 337 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    S.-C. Cui, X.-Z. Sun, J.-G. Liu, ChemSusChem 9, 1698 (2016)PubMedCrossRefGoogle Scholar
  20. 20.
    X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331, 746 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    W. Zhou, W. Li, J.-Q. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, D. Zhao, J. Am. Chem. Soc. 136, 9280 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    N. Liu, C. Schneider, D. Freitag, E.M. Zolnhofer, K. Meyer, P. Schmuki, Chem. Eur. J. 22, 13810 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    M. Tian, M. Mahjouri-Samani, G. Eres, R. Sachan, M. Yoon, M.F. Chisholm, K. Wang, A.A. Puretzky, C.M. Rouleau, D.B. Geohegan, G. Duscher, ACS Nano 9, 10482 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    B.S. Uppal, A. Zahid, P.I. Elliott, Eur. J. Inorg. Chem. 14, 2571 (2013)CrossRefGoogle Scholar
  25. 25.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    S. Anderson, Chem. Eur. J. 7, 4706 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    N. Liu, X. Zhou, N.T. Nguyen, K. Peters, F. Zoller, I. Hwang, C. Schneider, M.E. Miehlich, D. Freitag, K. Meyer, D. Fattakhova-Rohlfing, P. Schmuki, ChemSusChem 10, 62 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    S.M.Y.M. Mukthar Ali, K.Y. Sandhya, RSC Adv. 6, 60522 (2016)CrossRefGoogle Scholar
  29. 29.
    A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C.L. Bianchi, R. Psaro, V.D. Santo, J. Am. Chem. Soc. 134, 7600 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Y. Li, D.-S. Hwang, N.H. Lee, S.-J. Kim, Chem. Phys. Lett. 404, 25 (2005)CrossRefGoogle Scholar
  31. 31.
    N. Liu, C. Schneider, D. Freitag, M. Hartmann, U. Venkatesan, J. Muller, E. Spiecker, P. Schmuki, Nano Lett. 14, 3309 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    T. Su, Y. Yang, Y. Na, R. Fan, L. Li, L. Wei, B. Yang, W. Cao, A.C.S. Appl, Mater. Interfaces 7, 3754 (2015)CrossRefGoogle Scholar
  33. 33.
    M.D. Obushak, M.B. Lyakhovych, M.I. Ganushchak, Tetrahedron Lett. 39, 9567 (1998)CrossRefGoogle Scholar
  34. 34.
    F.F. Gadallah, R.M. Elofson, J. Org. Chem. 34, 3335 (1969)CrossRefGoogle Scholar
  35. 35.
    B. Lee, Y. Chen, F. Duerr, D. Mastrogiovanni, E. Garfunkel, E.Y. Andrei, V. Podzorov, Nano Lett. 10, 2427 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    B. Li, A.-V. Klekachev, M. Cantoro, C. Huyghebaert, A. Stesmans, I. Asselberghs, S. De-Gendt, S.-D. Feyter, Nanoscale 5, 9640 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Y. Cao, J. Feng, P. Wu, J. Mater. Chem. 22, 14997 (2012)CrossRefGoogle Scholar
  38. 38.
    D. Meng, J. Sun, S. Jiang, Y. Zeng, Y. Li, S. Yan, J. Geng, Y. Huang, J. Mater. Chem. 22, 21583 (2012)CrossRefGoogle Scholar
  39. 39.
    J.J. Wu, S.L. Lu, D.H. Ge, L.Z. Zhang, W. Chen, H.W. Gu, RSC Adv. 6, 67502 (2016)CrossRefGoogle Scholar
  40. 40.
    A.W.T. Choi, M.W. Louie, S. Po-Yam Li, H.W. Liu, B.T.-N. Chan, T. Chun-Ying Lam, A. Chun-Chi Lin, S.H. Cheng, K.K.W. Lo, Inorg. Chem. 51, 13289 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    A. Gölzhäuser, S. Panov, M. Mast, A. Schertel, M. Grunze, C. Wöll, Surf. Sci. 334, 235 (1995)CrossRefGoogle Scholar
  42. 42.
    H.-X. Wang, K.-G. Zhou, Y.-L. Xie, J. Zeng, N.-N. Chai, J. Li, H.-L. Zhang, Chem. Commun. 47, 5747 (2011)CrossRefGoogle Scholar
  43. 43.
    P.-J. Wei, G.-Q. Yu, Y. Naruta, J.-G. Liu, Angew. Chem. Int. Ed. 53, 6659 (2014)CrossRefGoogle Scholar
  44. 44.
    H. Hisao, T. Yuko, K. Kazuhide, S. Yoshiyuki, Inorg. Chem. Commun. 6, 300 (2003)CrossRefGoogle Scholar
  45. 45.
    S. Sato, T. Morikawa, T. Kajino, O. Ishitani, Angew. Chem. Int. Ed. 52, 988 (2013)CrossRefGoogle Scholar
  46. 46.
    H. Tsubaki, A. Sekine, Y. Ohashi, K. Koike, H. Takeda, O. Ishitani, J. Am. Chem. Soc. 127, 15544 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    M. Abdellah, A.M. El-Zohry, L.J. Antila, C.D. Windle, E. Reisner, L. Hammarström, J. Am. Chem. Soc. 139, 1226 (2017)PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Key Lab for Advanced Materials, School of Chemistry & Molecular EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations