Advertisement

Catalytic hydrolysis of microcystin-LR peptides on the surface of naturally occurring minerals

  • Yanfen Fang
  • Xinqiang Cao
  • Wei Zhou
  • Yue Li
  • David M. Johnson
  • Yingping HuangEmail author
Article
  • 22 Downloads

Abstract

There are increasing concerns about detoxification of microcystin-LR (MC-LR) over the past few decades. Nevertheless, the removal of MC-LR in water by hydrolysis has not been addressed yet. The hydrolysis efficiencies of MC-LR by six natural minerals were investigated in the present study. Limonite displayed the highest activity among the screened six minerals, which is in accordance with the highest specific surface area (17.8 m2/g) and surface acidity. The hydrolysis of MC-LR was catalyzed by Lewis acid sites on limonite surface. The effects of temperature, pH reaction time and illumination on MC-LR hydrolysis catalyzed by limonite were then investigated. As expected, the high temperature, the addition of either acid or base and long reaction time could enhance the reaction rate, but UV light irradiation had little influence. These results give the indication that naturally occurring minerals can promote the hydrolysis of MC-LR, which gives a more universal view about the natural degradation of microcystins and could lead to more accurate predictions of the duration of microcystin toxicity in environment.

Keywords

Mineral MC-LR Peptide Hydrolysis Lewis acid catalysis 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21577078, 21677086 and 21407092), the Natural Science Foundation for Innovation Group of Hubei Province, China (2015CFA021) and Three Gorges University Master's Thesis Training Fund (2019SSPY154).

References

  1. 1.
    E. Briand, M. Gugger, J.C. François, C. Bernard, J.F. Humbert, C. Quiblier, Appl. Environ. Microbiol. 74, 3839 (2008)CrossRefGoogle Scholar
  2. 2.
    R.M. Dawson, The toxicology of microcystins. Toxicon 36, 953 (1998)CrossRefGoogle Scholar
  3. 3.
    S. Imanishi, K. Harada, Toxicon 43, 651 (2004)CrossRefGoogle Scholar
  4. 4.
    J. Yang, D.X. Chen, A.P. Deng, Y.P. Huang, C.C. Chen, Res. Chem. Intermed. 37, 47 (2011)CrossRefGoogle Scholar
  5. 5.
    J.S. An, W.W. Carmichael, Toxicon 32, 1495 (1994)CrossRefGoogle Scholar
  6. 6.
    I. Liu, L.A. Lawton, P.K. Robertson, Environ. Sci. Technol. 37, 3214 (2003)CrossRefGoogle Scholar
  7. 7.
    Y.F. Fang, Y.P. Huang, J. Yang, P. Wang, G.W. Cheng, Environ. Sci. Technol. 45, 1593 (2011)CrossRefGoogle Scholar
  8. 8.
    D.G. Bourne, G.J. Jones, R.L. Blakeley, A. Jones, A.P. Negri, P. Riddles, Appl. Environ. Microbiol. 62, 4086 (1996)PubMedPubMedCentralGoogle Scholar
  9. 9.
    M. Brigante, G. Zanini, M. Avena, J. Hazard. Mater. 184, 241 (2010)CrossRefGoogle Scholar
  10. 10.
    R. Olsson, R. Giesler, J.S. Loring, P. Persson, Environ. Sci. Technol. 46, 285 (2016)CrossRefGoogle Scholar
  11. 11.
    K. Marshall-Bowman, S. Ohara, D.A. Sverjensky, R.M. Hazen, H.J. Cleaves, Geochim. Cosmochim. Acta 74, 5852 (2010)CrossRefGoogle Scholar
  12. 12.
    Y. Fang, Y. Zhang, W. Ma, D.M. Johnson, Y.P. Huang, Appl. Catal. B Environ. 160–161, 597 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Reichelt, C. Hummert, B. Luckas, Chromatographia 49, 671 (1999)CrossRefGoogle Scholar
  14. 14.
    Y. Fang, W. Zhou, C. Tang, Y. Huang, D.M. Johnson, Z.J. Ren, Environ. Sci. Technol. 52, 6426 (2018)CrossRefGoogle Scholar
  15. 15.
    N. Lahl, K. Singh, L. Singheiser, K. Hilpert, D. Bahadur, J. Mater. Sci. 35, 3089 (2000)CrossRefGoogle Scholar
  16. 16.
    V. Dupont, A. Lecoq, J.P. Mangeot, A. Aubry, G. Boussard, M. Marraud, J. Am. Chem. Soc. 115, 8898 (2002)CrossRefGoogle Scholar
  17. 17.
    A.F. Gualtieri, C. Giacobbe, C. Viti, Am. Mineral. 97, 666 (2015)CrossRefGoogle Scholar
  18. 18.
    D.S. Baldwin, J.K. Beattie, L.M. Coleman, D.R. Jones, Environ. Sci. Technol. 29, 1706 (1995)CrossRefGoogle Scholar
  19. 19.
    A. Torrents, A. Stone, Environ. Sci. Technol. 26, 210 (1992)CrossRefGoogle Scholar
  20. 20.
    A. Torrents, A.T. Stone, Environ. Sci. Technol. 25, 143 (1991)CrossRefGoogle Scholar
  21. 21.
    J. Geboers, D.V.S. Van, K. Carpentier, P. Jacobs, B. Sels, Chem. Commun. 47, 5590 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yanfen Fang
    • 1
    • 2
  • Xinqiang Cao
    • 1
    • 2
  • Wei Zhou
    • 1
    • 2
  • Yue Li
    • 3
  • David M. Johnson
    • 1
    • 2
  • Yingping Huang
    • 2
    Email author
  1. 1.College of Biological and Pharmaceutical SciencesChina Three Gorges UniversityYichangChina
  2. 2.Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of EducationChina Three Gorges UniversityYichangChina
  3. 3.Department of ChemistryNankai UniversityTianjinPeople’s Republic of China

Personalised recommendations