Research on Chemical Intermediates

, Volume 45, Issue 12, pp 5907–5917 | Cite as

Preparation of NiCoP-decorated g-C3N4 as an efficient photocatalyst for H2O2 production

  • Yulan Peng
  • Liang Zhou
  • Lingzhi Wang
  • Juying LeiEmail author
  • Yongdi Liu
  • Stéphane Daniele
  • Jinlong ZhangEmail author


The development of high-efficiency economic photocatalyst for H2O2 production is of great significance for renewable energy technologies. Here, we use a successive in situ growth and phosphating method successfully prepared NiCoP/g-C3N4 composite photocatalyst. NiCoP was uniformly dispersed in the form of nanoparticles on the surface of g-C3N4 nanosheet as a cocatalyst. The obtained NiCoP/g-C3N4 composite showed excellent performance in photocatalytic production of H2O2, which was due to NiCoP, has a better electronic conductivity to efficiently transfer charge, improves charge separation efficiency and enhances visible light absorption. This study can provide an effective theoretical basis for the design of bimetallic phosphide modified photocatalysts for photocatalytic production of H2O2.


Bimetallic phosphide g-C3N4 Photocatalysis H2O2 production 



This work was financially supported by the National Natural Science Foundation of China (21777044, 5171101651, 21677048 and 21811540394), the National Key Research and Development Program (2016YFA0204200), the National Water Pollution Control and Treatment Science and Technology Major Project (2017ZX07207002) and the Fundamental Research Funds for the Central Universities (222201714061, 222201915012, 222201814053, 222201917009 and 222201818014).


  1. 1.
    Y. Gu, Y. Chen, X. Sun, Y. Liu, Res. Chem. Intermed. 43, 3095 (2017)CrossRefGoogle Scholar
  2. 2.
    L. Verna, S. Holman, V. Lee, J. Hoh, Cell Biol. Toxicol. 16, 303 (2000)CrossRefGoogle Scholar
  3. 3.
    M. Xing, W. Xu, C. Dong, Y. Bai, J. Zeng, Y. Zhou, J. Zhang, Y. Yin, Chem 4, 1359 (2018)CrossRefGoogle Scholar
  4. 4.
    C. Dong, J. Ji, B. Shen, M. Xing, J. Zhang, Environ. Sci. Technol. 52, 11297 (2018)CrossRefGoogle Scholar
  5. 5.
    Z. Jiang, L. Wang, J. Lei, Y. Liu, J. Zhang, Appl. Catal. B: Environ. 241, 367 (2019)CrossRefGoogle Scholar
  6. 6.
    A. Zhang, S. Gao, Y. Lv, Z. Xi, Res. Chem. Intermed. 35, 563 (2009)CrossRefGoogle Scholar
  7. 7.
    L.V. Pham, J. Messinger, Biochim. Biophys. Acta (BBA)-Bioenerg. 1837, 1411 (2014)CrossRefGoogle Scholar
  8. 8.
    T. Iwahama, S. Sakaguchi, Y. Ishii, Org. Process Res. Dev. 4, 94 (2000)CrossRefGoogle Scholar
  9. 9.
    V.R. Choudhary, A.G. Gaikwad, S.D. Sansare, Angew. Chem. Int. Ed. 40, 1776 (2001)CrossRefGoogle Scholar
  10. 10.
    S. Zhao, X. Zhao, H. Zhang, J. Li, Y. Zhu, Nano Energy 35, 405 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Li, G. Dong, R. Hailili, L. Yang, Y. Li, F. Wang, Y. Zeng, C. Wang, Appl. Catal. B: Environ. 190, 26 (2016)CrossRefGoogle Scholar
  12. 12.
    R. Wang, K. Pan, D. Han, J. Jiang, C. Xiang, Z. Huang, L. Zhang, X. Xu, ChemSusChem 9, 2470 (2016)CrossRefGoogle Scholar
  13. 13.
    F. Liu, J. Yu, G. Tu, L. Qu, J. Xiao, Y. Liu, L. Wang, J. Lei, J. Zhang, Appl. Catal. B: Environ. 201, 1 (2017)CrossRefGoogle Scholar
  14. 14.
    J. Lei, Y. Chen, F. Shen, L. Wang, Y. Liu, J. Zhang, J. Alloys Compd. 631, 328 (2015)CrossRefGoogle Scholar
  15. 15.
    H. Li, L. Wang, Y. Liu, J. Lei, J. Zhang, Res. Chem. Intermed. 42, 3979 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Lei, F. Liu, L. Wang, Y. Liu, J. Zhang, RSC Adv. 7, 27377 (2017)CrossRefGoogle Scholar
  17. 17.
    R. Su, R. Tiruvalam, A.J. Logsdail, Q. He, C.A. Downing, M.T. Jensen, N. Dimitrotos, L. Kesavan, P.P. Wells, R. Bechstein, H.H. Jensen, S. Wandt, C.R.A. Catlow, C.J. Kiely, G.J. Hutchings, F. Besenbacher, ACS Nano 8, 3490 (2017)CrossRefGoogle Scholar
  18. 18.
    M.V. Dozzi, L. Parti, P. Canton, E. Selli, Phys. Chem. Chem. Phys. 11, 7171 (2009)CrossRefGoogle Scholar
  19. 19.
    B. Qiu, Q. Zhu, M. Xing, J. Zhang, Chem. Commun. 53, 897 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Xing, B. Qiu, M. Du, Q. Zhu, L. Wang, J. Zhang, Adv. Funct. Mater. 27, 1702624 (2017)CrossRefGoogle Scholar
  21. 21.
    B. Qiu, Q. Zhu, M. Du, L. Fan, M. Xing, J. Zhang, Angew. Chem. Int. Ed. 56, 2684 (2017)CrossRefGoogle Scholar
  22. 22.
    Y. Peng, L. Wang, Y. Liu, H. Chen, J. Lei, J. Zhang, Eur. J. Inorg. Chem. 2017, 4797 (2017)CrossRefGoogle Scholar
  23. 23.
    X. Zhang, X. Xie, H. Wang, J. Zhan, B.C. Pan, Y. Xie, J. Am. Chem. Soc. 135, 18 (2012)CrossRefGoogle Scholar
  24. 24.
    A. Thomas, A. Ficher, F. Goettmanne, M. Antonietti, J. Oliver Müller, R. Schlögl, J.M. Carlsson, J. Mater. Chem. 18, 4893 (2008)CrossRefGoogle Scholar
  25. 25.
    M.J. Bojdys, J.O. Müller, M. Antonietti, A. Thoma, Chem. Eur. J. 14, 8177 (2008)CrossRefGoogle Scholar
  26. 26.
    H. Gao, S. Yan, J. Wang, Y. Huang, P. Wang, Z. Li, Z. Zou, Phys. Chem. Chem. Phys. 15, 18077 (2013)CrossRefGoogle Scholar
  27. 27.
    X. Ma, Y. Chang, Z. Zhang, J. Tang, J. Mater. Chem. A. 6, 2100 (2018)CrossRefGoogle Scholar
  28. 28.
    H. Zhang, X. Li, A. Hähnel, V. Naumann, L. Chao, S. Azimi, S.T. Schwizer, A.W. Maijenburg, R.B. Wehrspohn, Adv. Funct. Mater. 28, 1706847 (2018)CrossRefGoogle Scholar
  29. 29.
    W. Iqbal, C. Dong, M. Xing, X. Tan, J. Zhang, Catal. Sci. Technol. 7, 1726 (2017)CrossRefGoogle Scholar
  30. 30.
    A. Akhundi, E.I. García-López, G. Marcì, A. Habibi-Yangjeh, L. Palmisano, Res. Chem. Intermed. 43, 5153 (2017)CrossRefGoogle Scholar
  31. 31.
    G. Zhang, J. Ren, W. Zhao, M. Tian, W. Chen, Res. Chem. Intermed. 44, 5547 (2018)CrossRefGoogle Scholar
  32. 32.
    H. Dong, X. Guo, Y. Yin, Res. Chem. Intermed. 44, 3151 (2018)CrossRefGoogle Scholar
  33. 33.
    L. Song, S. Zhang, Q. Wei, Powder Technol. 212, 367 (2011)CrossRefGoogle Scholar
  34. 34.
    S. Liu, L. Yun, B. Chen, Q. Zhou, L. Wang, Q. Zheng, C. Che, C. Chen, Chem. Commun. 53, 13153 (2017)CrossRefGoogle Scholar
  35. 35.
    C. Tang, F. Qu, A.M. Asiri, Y. Luo, X. Sun, Inorg. Chem. Front. 4, 659 (2017)CrossRefGoogle Scholar
  36. 36.
    X. Ji, R. Zhang, X. Shi, A.M. Asiri, B. Zheng, X. Sun, Nanoscale 10, 7941 (2018)CrossRefGoogle Scholar
  37. 37.
    L. Zhou, L. Wang, J. Lei, Y. Liu, J. Zhang, Catal. Commun. 89, 125 (2017)CrossRefGoogle Scholar
  38. 38.
    H. Li, L. Zhou, L. Wang, Y. Liu, J. Lei, J. Zhang, Phys. Chem. Chem. Phys. 17, 17406 (2015)CrossRefGoogle Scholar
  39. 39.
    N. Zhang, X. Li, H. Ye, S. Chen, H. Ju, D. Liu, Y. Lin, W. Ye, C. Wang, Q. Xu, Q. Xu, J. Zhu, L. Song, J. Jiang, Y. Xiong, J. Am. Chem. Soc. 138, 8928 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yulan Peng
    • 1
    • 2
  • Liang Zhou
    • 3
  • Lingzhi Wang
    • 1
  • Juying Lei
    • 3
    • 4
    • 5
    Email author
  • Yongdi Liu
    • 3
    • 4
    • 5
  • Stéphane Daniele
    • 2
  • Jinlong Zhang
    • 1
    Email author
  1. 1.Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.IRCELYON, CNRS-UMR 5256Université Lyon 1Villeurbanne CedexFrance
  3. 3.State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  4. 4.Shanghai Institute of Pollution Control and Ecological SecurityShanghaiPeople’s Republic of China
  5. 5.National Engineering Laboratory for Industrial Wastewater TreatmentEast China University of Science and TechnologyShanghaiChina

Personalised recommendations