Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 12, pp 5801–5829 | Cite as

Molecules and heterostructures at TiO2 surface: the cases of H2O, CO2, and organic and inorganic sensitizers

  • Lorenzo Mino
  • Federico Cesano
  • Domenica Scarano
  • Giuseppe Spoto
  • Gianmario MartraEmail author
Article
  • 77 Downloads

Abstract

TiO2-based (nano)materials are widely exploited in systems and devices of actual technological interest, because of their outstanding physical and chemical properties, including chemical stability, long durability, non-toxicity abundance and low cost. For this, they are considered ideal for many practical applications including energy-related devices, photocatalysis, but are known to have some limitations. To improve their performance and then to find more efficient materials in the energy and environmental remediation fields, at first the investigation of the surface/interface properties at the molecular scale is required. In this contribution, a critical review of advances in the field of the TiO2 surface chemistry, highlighting the role of interactions at the molecular level, grafting and assembling/fabrication of suitable heterostructures, is reported. A few case studies, from the H2O, CO2 and acetylene interactions until to the grafting of organic/inorganic systems (graphene, MoS2) at the TiO2 surface, are highlighted. The discussed case studies are argued from their principles to the technological relevance.

Keywords

TiO2 photocatalysis H2O, CO2 and C2H2 adsorption Graphene and MoS2/TiO2 hybrids Surface heterostructures IR spectroscopy STM and AFM HR-TEM Electronic spectroscopy Quantum modelling 

Notes

References

  1. 1.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)Google Scholar
  2. 2.
    A. Tanaka, K. Teramura, S. Hosokawa, H. Kominami, T. Tanaka, Chem. Sci. 8, 2574 (2017)PubMedPubMedCentralGoogle Scholar
  3. 3.
    M. Kitano, M. Matsuoka, T. Hosoda, M. Ueshima, M. Anpo, Res. Chem. Intermed. 34, 577 (2008)Google Scholar
  4. 4.
    Y. Yoshida, M. Matsuoka, S.C. Moon, H. Mametsuka, E. Suzuki, M. Anpo, Res. Chem. Intermed. 26, 567 (2000)Google Scholar
  5. 5.
    W.J. Feng, L.Y. Lin, H.J. Li, B. Chi, J. Pu, J. Li, Int. J. Hydrogen Energy 42, 3938 (2017)Google Scholar
  6. 6.
    S. Onsuratoom, S. Chavadej, T. Sreethawong, Int. J. Hydrogen Energy 36, 5246 (2011)Google Scholar
  7. 7.
    T.V. Nguyen, D.J. Choi, O.B. Yang, Res. Chem. Intermed. 31, 483 (2005)Google Scholar
  8. 8.
    B. Abdollahi, A. Shakeri, S. Aber, M. Sharifi Bonab, Res. Chem. Intermed. 44, 1505 (2018)Google Scholar
  9. 9.
    Z. Boutamine, O. Hamdaoui, S. Merouani, Res. Chem. Intermed. 43, 1709 (2017)Google Scholar
  10. 10.
    L. Cermenati, A. Albini, P. Pichat, C. Guillard, Res. Chem. Intermed. 26, 221 (2000)Google Scholar
  11. 11.
    D. Mas, P. Pichat, C. Guillard, Res. Chem. Intermed. 23, 275 (1997)Google Scholar
  12. 12.
    L. Amalric, C. Guillard, P. Pichat, Res. Chem. Intermed. 21, 33 (1995)Google Scholar
  13. 13.
    C. McCullagh, J.M.C. Robertson, D.W. Bahnemann, P.K.J. Robertson, Res. Chem. Intermed. 33, 359 (2007)Google Scholar
  14. 14.
    A.A. Ashkarran, M. Ghavamipour, H. Hamidinezhad, H. Haddadi, Res. Chem. Intermed. 41, 7299 (2015)Google Scholar
  15. 15.
    R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 388, 431 (1997)Google Scholar
  16. 16.
    A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 photocatalysis fundamentals and applications (BKC Inc., Tokyo, 1999)Google Scholar
  17. 17.
    A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photob. C Photochem. Rev. 1, 1 (2000)Google Scholar
  18. 18.
    H. Nishikiori, M. Tagahara, L. Mukoyama, T. Fujii, Res. Chem. Intermed. 36, 947 (2010)Google Scholar
  19. 19.
    S. Remiro-Buenamanana, H. Garcia, ChemCatChem 11, 342 (2019)Google Scholar
  20. 20.
    W.G. Tu, Y. Zhou, Z.G. Zou, Adv. Mater. 26, 4607 (2014)PubMedGoogle Scholar
  21. 21.
    V. Jeyalakshmi, K. Rajalakshmi, R. Mahalakshmy, K.R. Krishnamurthy, B. Viswanathan, Res. Chem. Intermed. 39, 2565 (2013)Google Scholar
  22. 22.
    Y. Yamazaki, H. Takeda, O. Ishitani, J. Photochem. Photobiol. C-Photochem. Rev. 25, 106 (2015)Google Scholar
  23. 23.
    B. Chen, Y. Meng, J. Sha, C. Zhong, W. Hu, N. Zhao, Nanoscale 10, 34 (2018)Google Scholar
  24. 24.
    U. Diebold, Appl. Phys. A 76, 681 (2003)Google Scholar
  25. 25.
    U. Diebold, Surf. Sci. Rep. 48, 53 (2003)Google Scholar
  26. 26.
    X.-Q. Gong, A. Selloni, M. Batzill, U. Diebold, Nat. Mater. 5, 665 (2006)PubMedGoogle Scholar
  27. 27.
    Y. Kubokawa, M. Anpo, Stud. Surf. Sci. Catal. 21, 127 (1985)Google Scholar
  28. 28.
    M. Anpo, M. Takeuchi, J. Catal. 216, 505 (2003)Google Scholar
  29. 29.
    H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Nature 453, 638 (2008)PubMedGoogle Scholar
  30. 30.
    A. Selloni, Nat. Mater. 7, 613 (2008)PubMedGoogle Scholar
  31. 31.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)PubMedGoogle Scholar
  32. 32.
    F. Cesano, D. Pellerej, D. Scarano, G. Ricchiardi, A. Zecchina, J. Photochem. Photob. A-Chem 242, 51 (2012)Google Scholar
  33. 33.
    F. Cesano, I. Rattalino, F. Bardelli, A. Sanginario, A. Gianturco, A. Veca, C. Viazzi, P. Castelli, D. Scarano, A. Zecchina, Carbon 61, 63 (2013)Google Scholar
  34. 34.
    E. Groppo, C. Lamberti, F. Cesano, A. Zecchina, PCCP 8, 2453 (2006)PubMedGoogle Scholar
  35. 35.
    H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M.A. Akia, J. Ind. Eng. Chem. 26, 1 (2015)Google Scholar
  36. 36.
    M.J. Uddin, D.E. Daramola, E. Velasquez, T.J. Dickens, J. Yan, Phys. Status Solidi RRL 8, 898 (2014)Google Scholar
  37. 37.
    Y. Wang, S. Lkhamjav, B. Qiu, C. Dong, C. Dong, Y. Zhou, B. Shen, M. Xing, J. Zhang, Res. Chem. Intermed. 43, 2055 (2017)Google Scholar
  38. 38.
    M. Takeuchi, M. Matsuoka, M. Anpo, Res. Chem. Intermed. 38, 1261 (2012)Google Scholar
  39. 39.
    N. Sakaguchi Miyamoto, R. Miyamoto, E. Giamello, T. Kurisaki, H. Wakita, Res. Chem. Intermed. 44, 4563 (2018)Google Scholar
  40. 40.
    S.M. Chaudhari, P.M. Gawal, P.K. Sane, S.M. Sontakke, P.R. Nemade, Res. Chem. Intermed. 44, 3115 (2018)Google Scholar
  41. 41.
    J. Liu, L. Zhang, X. Yao, S.S.C. Chuang, Res. Chem. Intermed. 43, 5041 (2017)Google Scholar
  42. 42.
    S. Cravanzola, F. Cesano, F. Gaziano, D. Scarano, Catalysts 7, 214 (2017)Google Scholar
  43. 43.
    B.P. Dhamaniya, A. Kumar, A.K. Srivastava, J.S. Tawale, Res. Chem. Intermed. 43, 387 (2017)Google Scholar
  44. 44.
    Z. Youssef, L. Colombeau, N. Yesmurzayeva, F. Baros, R. Vanderesse, T. Hamieh, J. Toufaily, C. Frochot and T. Roques-Carmes 159, 49 (2018)Google Scholar
  45. 45.
    I.M. Kobasa, I.V. Kondratyeva, L.I. Odosiy, Y.V. Kropelnytska, Res. Chem. Intermed. 45, 1 (2019)Google Scholar
  46. 46.
    A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 33, 269 (2000)PubMedGoogle Scholar
  47. 47.
    I. Robel, V. Subramanian, M. Kuno, P.V. Kamat, J. Am. Chem. Soc. 128, 2385 (2006)PubMedGoogle Scholar
  48. 48.
    C. Sun, P. He, G. Pan, Y. Miao, T. Zhang, L. Zhang, Res. Chem. Intermed. 44, 2607 (2018)Google Scholar
  49. 49.
    B. Soman, S. Challagulla, S. Payra, S. Dinda, S. Roy, Res. Chem. Intermed. 44, 2261 (2018)Google Scholar
  50. 50.
    S. Bao, J. Wan, B. Tian, J. Zhang, Res. Chem. Intermed. 44, 6137 (2018)Google Scholar
  51. 51.
    C.Z. Wen, J.Z. Zhou, H.B. Jiang, Q.H. Hu, S.Z. Qiao, H.G. Yang, Chem. Commun. 47, 4400 (2011)Google Scholar
  52. 52.
    J. Yu, J. Lei, L. Wang, C. Guillard, J. Zhang, Y. Liu, M. Anpo, Res. Chem. Intermed. 45, 1 (2019)Google Scholar
  53. 53.
    Y. Chen, Q. Dong, L. Wang, X. Guo, S. Ai, H. Ding, Res. Chem. Intermed. 44, 7369 (2018)Google Scholar
  54. 54.
    W. Zhang, Y. Zhou, C. Dong, B. Shen, M. Xing, J. Zhang, Res. Chem. Intermed. 44, 4797 (2018)Google Scholar
  55. 55.
    P. Verma, S.K. Samanta, Res. Chem. Intermed. 44, 1963 (2018)Google Scholar
  56. 56.
    J.C. Colmenares, R.S. Varma, P. Lisowski, Green Chem. 18, 5736 (2016)Google Scholar
  57. 57.
    B. Tang, H. Chen, H. Peng, Z. Wang, W. Huang, Nanomaterials 8, 105 (2018)PubMedCentralGoogle Scholar
  58. 58.
    K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A General 489, 1 (2015)Google Scholar
  59. 59.
    K. Lee, H. Yoon, C. Ahn, J. Park, S. Jeon, Nanoscale 11, 7025 (2019)PubMedGoogle Scholar
  60. 60.
    M. Baca, W. Kukuka, K. Cendrowski, E. Mijowska, R.J. Kaleczuk, B. Zieliska, ChemSusChem 12, 612 (2019)PubMedGoogle Scholar
  61. 61.
    S. Cravanzola, S.M. Jain, F. Cesano, A. Damin, D. Scarano, RSC Adv. 5, 103255 (2015)Google Scholar
  62. 62.
    J. Shi, Chem. Rev. 113, 2139 (2013)Google Scholar
  63. 63.
    L.A. King, W. Zhao, M. Chhowalla, D.J. Riley, G. Eda, J. Mater. Chem. 1, 8935 (2013)Google Scholar
  64. 64.
    W.K. Ho, J.C. Yu, J. Lin, J.G. Yu, P.S. Li, Langmuir 20, 5865 (2004)PubMedGoogle Scholar
  65. 65.
    T. Umeyama, H. Imahori, Dalton Trans. 46, 15615 (2017)PubMedGoogle Scholar
  66. 66.
    E. Singh, H.S. Nalwa, Sci. Adv. Mater. 7, 1863 (2015)Google Scholar
  67. 67.
    V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, J. Photochem. Photob. C Photochem. Rev. 25, 1 (2015)Google Scholar
  68. 68.
    I.A. Rusetskyi, M.O. Danilov, S.S. Fomanyuk, I.A. Slobodyanyuk, V.S. Vorobets, G.Y. Kolbasov, Res. Chem. Intermed. (2019).  https://doi.org/10.1007/s11164-019-03895-0 Google Scholar
  69. 69.
    W. Iqbal, B. Tian, M. Anpo, J. Zhang, Res. Chem. Intermed. 43, 5187 (2017)Google Scholar
  70. 70.
    H.Y. He, J.H. Lin, W. Fu, X.L. Wang, H. Wang, Q.S. Zeng, Q. Gu, Y.M. Li, C. Yan, B.K. Tay, C. Xue, X. Hu, S.T. Pantelides, W. Zhou, Z. Liu, Adv. Energy Mater. 6, 1600464 (2016)Google Scholar
  71. 71.
    W.J. Han, C. Zang, Z.Y. Huang, H. Zhang, L. Ren, X. Qi, J.X. Zhong, Int. J. Hydrogen Energy 39, 19502 (2014)Google Scholar
  72. 72.
    B.A. Chen, E.Z. Liu, F. He, C.S. Shi, C.N. He, J.J. Li, N.Q. Zhao, Nano Energy 26, 541 (2016)Google Scholar
  73. 73.
    B.A. Chen, E.Z. Liu, T.T. Cao, F. He, C.S. Shi, C.N. He, L.Y. Ma, Q.Y. Li, J.J. Li, N.Q. Zhao, Nano Energy 33, 247 (2017)Google Scholar
  74. 74.
    S. Cravanzola, F. Cesano, F. Gaziano, D. Scarano, Front. Chem. 5, 91 (2017)PubMedPubMedCentralGoogle Scholar
  75. 75.
    L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, Y. Yang, En. Environm. Sci. 11, 106 (2018)Google Scholar
  76. 76.
    K.H. Hu, X.G. Hu, Y.F. Xu, X.Z. Pan, React. Kinet. Mech. Catal. 100, 153 (2010)Google Scholar
  77. 77.
    Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano 6, 74 (2012)PubMedGoogle Scholar
  78. 78.
    F. Cesano, D. Scarano, Coatings 8, 419 (2018)Google Scholar
  79. 79.
    Y. Lin, P. Ren, C. Wei, CrystEngComm 21, 3439 (2019)Google Scholar
  80. 80.
    Y. Li, C. Cai, B. Sun, J. Chen, Semicond. Sci. Technol. 32, 105011 (2017)Google Scholar
  81. 81.
    L. Zheng, S. Han, H. Liu, P. Yu, X. Fang, Small 12, 1527 (2016)PubMedGoogle Scholar
  82. 82.
    Y.J. Yuan, Z.J. Ye, H.W. Lu, B. Hu, Y.H. Li, D.Q. Chen, J.S. Zhong, Z.T. Yu, Z.G. Zou, ACS Catal. 6, 532 (2016)Google Scholar
  83. 83.
    S. Wang, B.Y. Guan, L. Yu, X.W.D. Lou, Adv. Mater. 29, 1703614 (2017)Google Scholar
  84. 84.
    W. Gao, M. Wang, C. Ran, L. Li, Chem. Commun. 51, 1709 (2015)Google Scholar
  85. 85.
    S. Cravanzola, L. Muscuso, F. Cesano, G. Agostini, A. Damin, D. Scarano, A. Zecchina, Langmuir 31, 5469 (2015)PubMedGoogle Scholar
  86. 86.
    R.D. Brown, R.A. Burton, P.M. Ku, ASLE Trans. 6, 12 (1963)Google Scholar
  87. 87.
    T. Chinone, S. Okazaki, Nippon Kagaku Kaishi 10, 1327 (1978)Google Scholar
  88. 88.
    Y. Nosaka, H. Sasaki, K. Norimatsu, H. Miyama, Chem. Phys. Lett. 105, 456 (1984)Google Scholar
  89. 89.
    Y. Okamoto, A. Maezawa, T. Imanaka, J. Catal. 120, 29 (1989)Google Scholar
  90. 90.
    J. Ramirez, S. Fuentes, G. Díaz, M. Vrinat, M. Breysse, M. Lacroix, Appl. Catal. 52, 211 (1989)Google Scholar
  91. 91.
    K.C. Pratt, J.V. Sanders, V. Christov, J. Catal. 124, 416 (1990)Google Scholar
  92. 92.
    Y. He, A. Tilocca, O. Dulub, A. Selloni, U. Diebold, Nat. Mater. 8, 585 (2009)PubMedGoogle Scholar
  93. 93.
    G.S. Herman, Z. Dohnálek, N. Ruzycki, U. Diebold, J. Phys. Chem. B 107, 2788 (2003)Google Scholar
  94. 94.
    M. Setvin, B. Daniel, U. Aschauer, W. Hou, Y.-F. Li, M. Schmid, A. Selloni, U. Diebold, Phys. Chem. Chem. Phys. 16, 21524 (2014)PubMedGoogle Scholar
  95. 95.
    M. Primet, P. Pichat, M.V. Mathieu, J. Phys. Chem. 75, 1216 (1971)Google Scholar
  96. 96.
    A.A. Tsyganenko, V.N. Filimonov, J. Mol. Struct. 19, 579 (1973)Google Scholar
  97. 97.
    C. Morterra, A. Chiorino, F. Boccuzzi, E.Z. Fisicaro, Phys. Chem. Neue Folge 124, 211 (1982)Google Scholar
  98. 98.
    G. Busca, H. Saussey, O. Saur, J.C. Lavalley, V. Lorenzelli, Appl. Catal. 14, 245 (1985)Google Scholar
  99. 99.
    K. Hadjiivanov, A. Davydov, D. Klissurski, Kinet. Katal. 29, 161 (1988)Google Scholar
  100. 100.
    C. Morterra, J. Chem. Soc. Faraday Trans. 84, 1617 (1988)Google Scholar
  101. 101.
    K.I. Hadjiivanov, D.G. Klissurski, Chem. Soc. Rev. 25, 61 (1996)Google Scholar
  102. 102.
    S.H. Szczepankiewicz, A.J. Colussi, M.R. Hoffmann, J. Phys. Chem. B 104, 9842 (2000)Google Scholar
  103. 103.
    B. Erdem, R.A. Hunsicker, G.W. Simmons, E. David Sudol, V.L. Dimonie, M.S. El-Aasser, Langmuir 17, 2664 (2001)Google Scholar
  104. 104.
    K.S. Finnie, D.J. Cassidy, J.R. Bartlett, J.L. Woolfrey, Langmuir 17, 816 (2001)Google Scholar
  105. 105.
    P. Du, A. Bueno-López, M. Verbaas, A.R. Almeida, M. Makkee, J.A. Moulijn, G. Mul, J. Catal. 260, 75 (2008)Google Scholar
  106. 106.
    G. Martra, Appl. Cat. A Gen. 200, 275 (2000)Google Scholar
  107. 107.
    X.Q. Gong, A. Selloni, M. Batzill, U. Diebold, Nat. Mater. 5, 665 (2006)PubMedGoogle Scholar
  108. 108.
    L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys. Chem. C 116, 17008 (2012)Google Scholar
  109. 109.
    C. Deiana, E. Fois, S. Coluccia, G. Martra, J. Phys. Chem. C 114, 21531 (2010)Google Scholar
  110. 110.
    C. Arrouvel, M. Digne, M. Breysse, H. Toulhoat, P. Raybaud, J. Catal. 222, 152 (2004)Google Scholar
  111. 111.
  112. 112.
    L. Mino, F. Pellegrino, S. Rades, J. Radnik, V.D. Hodoroaba, G. Spoto, V. Maurino, G. Martra, A.C.S. Appl, Nano Mater. 1, 5355 (2018)Google Scholar
  113. 113.
    M. Takeuchi, L. Bertinetti, G. Martra, S. Coluccia, M. Anpo, Appl. Catal. A. Gen. 307, 13 (2006)Google Scholar
  114. 114.
    M. Takeuchi, K. Sakamoto, G. Martra, S. Coluccia, M. Anpo, J. Phys. Chem. B 109, 15422 (2005)PubMedGoogle Scholar
  115. 115.
    L. Mino, G. Spoto, A.M. Ferrari, J. Phys. Chem. C 118, 25016 (2014)Google Scholar
  116. 116.
    Y.J. Cao, S.J. Hu, M. Yu, S.S. Yan, M.C. Xu, Phys. Chem. Chem. Phys. 17, 23994 (2015)PubMedGoogle Scholar
  117. 117.
    I. Kamber, Res. Chem. Intermed. 23, 735 (1997)Google Scholar
  118. 118.
    A. Kubas, D. Berger, H. Oberhofer, D. Maganas, K. Reuter, F. Neese, J. Phys. Chem. Lett. 7, 4207 (2016)PubMedGoogle Scholar
  119. 119.
    Y.J. Cao, M. Yu, S.D. Qi, T.T. Wang, S.M. Huang, Z.F. Ren, S.S. Yan, S.J. Hu, M.C. Xu, Phys. Chem. Chem. Phys. 19, 31267 (2017)PubMedGoogle Scholar
  120. 120.
    L.F. Liao, C.F. Lien, D.L. Shieh, M.T. Chen, J.L. Lin, J. Phys. Chem. B 106, 11240 (2002)Google Scholar
  121. 121.
    J. Baltrusaitis, J. Schuttlefield, E. Zeitler, V.H. Grassian, Chem. Eng. J. 170, 471 (2011)Google Scholar
  122. 122.
    L. Mino, G. Spoto, S. Bordiga, A. Zecchina, J. Phys. Chem. C 117, 11186 (2013)Google Scholar
  123. 123.
    F. Pellegrino, F. Sordello, L. Mino, C. Minero, V.D. Hodoroaba, G. Martra, V. Maurino, ACS Catal. 9, 6692 (2019)Google Scholar
  124. 124.
    Z. Xiong, Z. Lei, Y.Z. Li, L.C. Dong, Y.C. Zhao, J.Y. Zhang, J. Photochem. Photobiol. C-Photochem. Rev. 36, 24 (2018)Google Scholar
  125. 125.
    L.J. Liu, H.L. Zhao, J.M. Andino, Y. Li, ACS Catal. 2, 1817 (2012)Google Scholar
  126. 126.
    L.J. Liu, F. Gao, H.L. Zhao, Y. Li, Appl. Catal. B-Environ. 134, 349 (2013)Google Scholar
  127. 127.
    Y. Wang, J. Zhao, T.F. Wang, Y.X. Li, X.Y. Li, J. Yin, C.Y. Wang, J. Catal. 337, 293 (2016)Google Scholar
  128. 128.
    L.J. Liu, C.Y. Zhao, J.T. Miller, Y. Li, J. Phys. Chem. C 121, 490 (2017)Google Scholar
  129. 129.
    M. Anpo, S.C. Moon, K. Chiba, G. Martra, S. Coluccia, Res. Chem. Intermed. 19, 495 (1993)Google Scholar
  130. 130.
    A. Zecchina, D. Scarano, S. Bordiga, G. Spoto, C. Lamberti, Surface structures of oxides and halides and their relationships to catalytic properties (Academic Press Inc, Cambridge, 2001)Google Scholar
  131. 131.
    J.C. Védrine, Res. Chem. Intermed. 41, 9387 (2015)Google Scholar
  132. 132.
    A.V. Ivanov, A.E. Koklin, E.B. Uvarova, L.M. Kustov, PCCP 5, 4718 (2003)Google Scholar
  133. 133.
    K.G. Pierce, M.A. Barteau, J. Phys. Chem. 98, 3882 (1994)Google Scholar
  134. 134.
    A.B. Sherrill, M.A. Barteau, J. Mol. Catal. A Chem. 184, 301 (2002)Google Scholar
  135. 135.
    A.H. Boonstra, C.A.H.A. Mutsaers, J. Phys. Chem. 79, 2025 (1975)Google Scholar
  136. 136.
    V. Rives-Arnau, N. Sheppard, JCS Faraday 76, 394 (1980)Google Scholar
  137. 137.
    V. Rives-Arnau, N. Sheppard, Soc. Faraday Trans. 77, 953 (1981)Google Scholar
  138. 138.
    S.M. Jain, J.J. Biedrzycki, V. Maurino, A. Zecchina, L. Mino, G. Spoto, J. Mater. Chem. A 2, 12247 (2014)Google Scholar
  139. 139.
    J.J. Biedrzycki, S. Livraghi, I. Corazzari, L. Mino, G. Spoto, E. Giamello, Langmuir 31, 569 (2015)PubMedGoogle Scholar
  140. 140.
    H.Y.T. Chen, S. Livraghi, E. Giamello, G. Pacchioni, ChemPlusChem 81, 64 (2016)Google Scholar
  141. 141.
    H. Liu, Z. Chen, L. Zhang, D. Zhu, Q. Zhang, Y. Luo, X. Shao, PLoS ONE 122, 6388 (2018)Google Scholar
  142. 142.
    H. Liu, D. Zhu, H. Shi, X. Shao, ACS Omega 1, 168 (2016)PubMedPubMedCentralGoogle Scholar
  143. 143.
    S. Cravanzola, M. Sarro, F. Cesano, P. Calza, D. Scarano, Nanomaterials 8(207), 201 (2018)Google Scholar
  144. 144.
    J. Jun Zhang, L. Zhang, X. Ma, Z. Ji, Appl. Surf. Sci. 430, 424 (2018)Google Scholar
  145. 145.
    X. Zhu, C. Yang, F. Xiao, J. Wang, X. Su, New J. Chem. 39, 683 (2015)Google Scholar
  146. 146.
    D. Scarano, F. Cesano, A. Zecchina, J. Phys. Chem. C 123, 7799 (2019)Google Scholar
  147. 147.
    W.D. Schneider, M. Heyde, H.J. Freund, Chem. Eur. J. 24, 2317 (2018)PubMedGoogle Scholar
  148. 148.
    H. Wang, D. Kong, P. Johanes, J.J. Cha, G. Zheng, K. Yan, N. Liu, Y. Cui, Nano Lett. 13, 3426 (2013)PubMedGoogle Scholar
  149. 149.
    F. Cesano, S. Bertarione, A. Piovano, M.M. Rahman, G. Agostini, E. Groppo, F. Bonino, C. Lamberti, D. Scarano, S. Bordiga, L. Montanari, L. Bonoldi, R. Millini, A. Zecchina, Catal. Sci. Technol. 1, 123 (2011)Google Scholar
  150. 150.
    H. Liu, Y. Li, M. Xiang, H. Zeng, X. Shao, ACS Nano 13, 6083 (2019)PubMedGoogle Scholar
  151. 151.
    S. Cravanzola, F. Cesano, G. Magnacca, A. Zecchina, D. Scarano, RSC Adv. 6, 59001 (2016)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Lorenzo Mino
    • 1
  • Federico Cesano
    • 1
  • Domenica Scarano
    • 1
  • Giuseppe Spoto
    • 1
  • Gianmario Martra
    • 1
    Email author
  1. 1.Department of Chemistry and Interdepartmental Centre “Nanostructured Interfaces and Surfaces – NIS”University of TorinoTurinItaly

Personalised recommendations