Advertisement

Research on Chemical Intermediates

, Volume 46, Issue 1, pp 909–922 | Cite as

MIL-100(Fe) metal–organic framework catalyzed oxidation of phenol revisited: dark-Fenton activity of the catalyst

  • Demet Ozer
  • Okan IctenEmail author
  • Nursen Altuntas-Oztas
  • Birgul Zumreoglu-Karan
Article
  • 159 Downloads

Abstract

This work presents the Fenton-type aqueous-phase oxidation of phenol with two MIL-100(Fe) catalysts prepared by hydrothermal and reflux methods. The catalysts were systematically characterized by infrared spectroscopy, X-ray powder diffraction, thermogravimetry, scanning electron microscopy, and surface analysis techniques. The influence of various experimental parameters on the course of the oxidation process conducted at room temperature was examined. The catalysts showed significant stability when phenol/H2O2 = 1:1 molar ratio was applied. In this case, 93% conversion was obtained with minimal iron leaching (ca. 0.2%). The hydrothermally prepared MIL-100(Fe) catalyst displayed higher catalytic activity due to its larger surface area. The results were also discussed to evaluate the “dark-Fenton” contribution of the system in “photo-Fenton” reactions previously reported with similar catalysts for phenol oxidation. This study has demonstrated that dark-Fenton reaction with MIL-100(Fe) catalysts has an important contribution to the mineralization of phenol without requiring irradiation or ZnO assistance.

Graphic abstract

A schematic illustration of the fabrication processes of MIL-100(Fe) catalysts and their use in Fenton-type phenol oxidation reaction.

Keywords

Metal–organic framework MIL-100(Fe) Phenol oxidation Fenton reaction Hydrothermal synthesis BET surface area 

Notes

Acknowledgements

The authors thank the Scientific Research and Development Office of Hacettepe University (FHD-2018-16973) for financial support.

Supplementary material

11164_2019_3997_MOESM1_ESM.docx (77 kb)
Supplementary material 1 (DOCX 76 kb)

References

  1. 1.
    B. Iurascu, I. Siminiceanu, D. Vione, M. Vicente, A. Gil, Water Res. 43, 1313 (2009)PubMedGoogle Scholar
  2. 2.
    M. Pirsaheb, S. Moradi, M. Shahlaei, N. Farhadian, J. Hazard. Mater. 353, 444 (2018)PubMedGoogle Scholar
  3. 3.
    P. Wang, X. Bian, Y. Li, Chin. Sci. Bull. 57, 33 (2012)Google Scholar
  4. 4.
    J.-Q. Xu, W.-H. Duan, X.-Z. Zhou, J.-Z. Zhou, J. Hazard. Mater. 131, 98 (2006)PubMedGoogle Scholar
  5. 5.
    F. Banat, B. Al-Bashir, S. Al-Asheh, O. Hayajneh, Environ. Pollut. 107, 391 (2000)PubMedGoogle Scholar
  6. 6.
    M. Kibret, W. Somitsch, K.-H. Robra, Water Res. 34, 1127 (2000)Google Scholar
  7. 7.
    C. Huang, C. Dong, Z. Tang, Waste Manag 13, 361 (1993)Google Scholar
  8. 8.
    E. Neyens, J. Baeyens, J. Hazard. Mater. 98, 33 (2003)PubMedGoogle Scholar
  9. 9.
    N. Inchaurrondo, C.P. Ramos, G. Žerjav, J. Font, A. Pintar, P. Haure, Microporous Mesoporous Mater. 239, 396 (2017)Google Scholar
  10. 10.
    M. Pereira, L. Oliveira, E. Murad, Clay Miner. 47, 285 (2012)Google Scholar
  11. 11.
    V. Kavitha, K. Palanivelu, Int. J. Environ. Sci. Technol. 13, 927 (2016)Google Scholar
  12. 12.
    H. Bel Hadjltaief, A. Sdiri, M. Gálvez, H. Zidi, P. Da Costa, M. Ben Zina, ChemEngineering 2, 29 (2018)Google Scholar
  13. 13.
    S. Messele, F. Stüber, C. Bengoa, A. Fortuny, A. Fabregat, J. Font, Procedia Eng. 42, 1373 (2012)Google Scholar
  14. 14.
    E.G. Garrido-Ramirez, M.V. Sivaiah, J. Barrault, S. Valange, B.K. Theng, M.S. Ureta-Zañartu, M. de la Luz-Mora, Microporous Mesoporous Mater. 162, 189 (2012)Google Scholar
  15. 15.
    J. Souza, B. Meireles, A. Cordeiro, I. Santos, A. Maia, Rev. Virtual Quim. 9, 2177 (2018)Google Scholar
  16. 16.
    J. Zhang, X. Zhang, Y. Wang, RSC Adv. 6, 13168 (2016)Google Scholar
  17. 17.
    X. Wei, H. Wu, F. Sun, J. Colloid Interface Sci. 504, 611 (2017)PubMedGoogle Scholar
  18. 18.
    T.W. Leal, L.A. Lourenço, HdL Brandão, A. da Silva, S.M.G.U. de Souza, A.A.U. de Souza, J. Hazard. Mater. 359, 96 (2018)PubMedGoogle Scholar
  19. 19.
    W. Xiang, Y. Zhang, H. Lin, C.-J. Liu, Molecules 22, 2103 (2017)PubMedCentralGoogle Scholar
  20. 20.
    J. Gascon, A. Corma, F. Kapteijn, F.X. Llabres i Xamena, ACS Catal. 4, 361 (2013)Google Scholar
  21. 21.
    J.W. Yoon, J.S. Lee, S. Lee, K.H. Cho, Y.K. Hwang, M. Daturi, C.H. Jun, R. Krishna, J.S. Chang, Chem. Eur. J. 21, 18431 (2015)PubMedGoogle Scholar
  22. 22.
    Y. Xia, F.-C. Tsai, N. Ma, K.-D. Zhang, H.-L. Liu, T. Jiang, T.-C. Chiang, Sci. Adv. Mater. 10, 172 (2018)Google Scholar
  23. 23.
    M. Marcos-Almaraz, R. Gref, V. Agostoni, C. Kreuz, P. Clayette, C. Serre, P. Couvreur, P. Horcajada, J. Mater. Chem. B 5, 8563 (2017)Google Scholar
  24. 24.
    J.W. Yoon, Y.K. Seo, Y.K. Hwang, J.S. Chang, H. Leclerc, S. Wuttke, P. Bazin, A. Vimont, M. Daturi, E. Bloch, Angew. Chem. 122, 6085 (2010)Google Scholar
  25. 25.
    D. Cheng, X. Li, Y. Qiu, Q. Chen, J. Zhou, Y. Yang, Z. Xie, P. Liu, W. Cai, C. Zhang, Anal. Methods 9, 2082 (2017)Google Scholar
  26. 26.
    L. Shen, H. Song, C. Wang, Electrochim. Acta 235, 595 (2017)Google Scholar
  27. 27.
    Y. Shi, C. Li, X. Liu, H. Zhang, Q. Zhao, X. Li, Integr. Ferroelectr. 181, 14 (2017)Google Scholar
  28. 28.
    A. Rapeyko, M.J. Climent, A. Corma, P. Concepción, S. Iborra, Chemsuschem 8, 3270 (2015)PubMedGoogle Scholar
  29. 29.
    A. Dhakshinamoorthy, M. Alvaro, H. Chevreau, P. Horcajada, T. Devic, C. Serre, H. Garcia, Catal. Sci. Technol. 2, 324 (2012)Google Scholar
  30. 30.
    D. Wang, M. Wang, Z. Li, ACS Catal. 5, 6852 (2015)Google Scholar
  31. 31.
    A. Dhakshinamoorthy, M. Alvaro, H. Garcia, J. Catal. 267, 1 (2009)Google Scholar
  32. 32.
    N.M. Mahmoodi, J. Abdi, M. Oveisi, M.A. Asli, M. Vossoughi, Mater. Res. Bull. 100, 357 (2018)Google Scholar
  33. 33.
    J. Tang, J. Wang, RSC Adv. 7, 50829 (2017)Google Scholar
  34. 34.
    J. Tang, J. Wang, Environ. Sci. Technol. 52, 5367 (2018)PubMedGoogle Scholar
  35. 35.
    M. Ahmad, S. Chen, F. Ye, X. Quan, S. Afzal, H. Yu, X. Zhao, Appl. Catal. B 245, 428 (2019)Google Scholar
  36. 36.
    N. Stock, S. Biswas, Chem. Rev. 112, 933 (2012)PubMedGoogle Scholar
  37. 37.
    Y.-K. Seo, J.W. Yoon, J.S. Lee, U.-H. Lee, Y.K. Hwang, C.-H. Jun, P. Horcajada, C. Serre, J.-S. Chang, Microporous Mesoporous Mater. 157, 137 (2012)Google Scholar
  38. 38.
    M. Pilloni, F. Padella, G. Ennas, S. Lai, M. Bellusci, E. Rombi, F. Sini, M. Pentimalli, C. Delitala, A. Scano, V. Cabras, I. Ferino, Microporous Mesoporous Mater. 213, 14 (2015)Google Scholar
  39. 39.
    F. Zhang, J. Shi, Y. Jin, Y. Fu, Y. Zhong, W. Zhu, Chem. Eng. J. 259, 183 (2015)Google Scholar
  40. 40.
    N.U. Qadir, S.A. Said, R.B. Mansour, K. Mezghani, A. Ul-Hamid, Dalton Trans. 45, 15621 (2016)PubMedGoogle Scholar
  41. 41.
    S. Yong, S. Xiao-yu, Z. Wang, L. Chun-yan, Z. Qidong, G. Jinsuo, L. Xinyong, Ferroelectrics 522, 20 (2018)Google Scholar
  42. 42.
    C.S. Turchi, D.F. Ollis, J. Catal. 122, 178 (1990)Google Scholar
  43. 43.
    E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73, 373 (1951)Google Scholar
  44. 44.
    F. Jeremias, S.K. Henninger, C. Janiak, Dalton Trans. 45, 8637 (2016)PubMedGoogle Scholar
  45. 45.
    B.D. Zdravkov, J.J. Čermák, M. Šefara, J. Janků, Cent. Eur. J. Chem. 5, 385 (2007)Google Scholar
  46. 46.
    J.C. Groen, L.A. Peffer, J. Pérez-Ramı́rez, Microporous Mesoporous Mater. 60, 1 (2003)Google Scholar
  47. 47.
    R. Seetharaj, P. Vandana, P. Arya, S. Mathew, Arab. J. Chem. 12, 295 (2019)Google Scholar
  48. 48.
    G. Yang, S.-J. Park, Materials 12, 1177 (2019)PubMedCentralGoogle Scholar
  49. 49.
    Y.-S. Kang, Y. Lu, K. Chen, Y. Zhao, P. Wang, W.-Y. Sun, Coord. Chem. Rev. 378, 262 (2019)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceHacettepe UniversityAnkaraTurkey

Personalised recommendations