Advertisement

Research on Chemical Intermediates

, Volume 46, Issue 1, pp 821–836 | Cite as

Fe3O4@zeolite-SO3H as a magnetically bifunctional and retrievable nanocatalyst for green synthesis of perimidines

  • Mehdi KalhorEmail author
  • Zohre Zarnegar
  • Fatemeh Janghorban
  • S. Ahmad Mirshokraei
Article
  • 45 Downloads

Abstract

In the current study, a new catalytic system based on Fe3O4 nanoparticles immobilized on zeolite-SO3H (Fe3O4@zeolite-SO3H) is introduced. In the first stage, zeolite@SO3H was synthesized from the reaction of zeolite-NaY with chlorosulfonic acid to produce zeolo sulfuric acid. Then, Fe3O4@zeolite-SO3H was prepared via immobilizing magnetic nanoparticles on the surface of functionalized zeolite-NaY as a support. Fe3O4@zeolite-SO3H as a multifunctional nanoplatform system was recognized by FT-IR, FE-SEM, XRD, EDS, BET, and VSM techniques. This nanocomposite demonstrated high activity in the catalytic synthesis of perimidine derivatives under solvent-free conditions. Combining the advantages of solid acids based nanocomposites and magnetic separation, this method provides an efficient and much improved modification of the general synthesis of perimidines. Recycling experiments confirmed the good stability of the nanocatalyst for six times and its constant activity.

Keywords

Fe3O4 nanoparticles Magnetic catalyst Sulfonated zeolite Perimidine Solvent-free conditions 

Notes

Acknowledgements

We are thankful to the Payame Noor University for the partial support of this work.

References

  1. 1.
    C. Hou, Z. Tai, L. Zhao, Y. Zhai, Y. Hou, Y. Fan, F.J. Wang, H. Lio, J. Mater. Chem. A. 7, 13460 (2019)Google Scholar
  2. 2.
    H. Sun, Z. Yang, Y. Pu, W. Dou, C. Wang, W. Wang, X. Hao, S. Chen, Q. Shao, M. Dong, S. Wu, T. Ding, Z. Guo, J. Colloid Interf. Sci. 547, 40 (2019)Google Scholar
  3. 3.
    B. Lin, Z. Lin, S. Chen, M. Yu, W. Li, Q. Gao, M. Dong, Q. Shao, S. Wu, T. Ding, Z. Guo, Dalton Trans. 48, 8279 (2019)PubMedGoogle Scholar
  4. 4.
    G. Zhu, X. Cui, Y. Zhang, S. Chen, M. Dong, H. Liu, Q. Shao, T. Ding, S. Wu, Z. Guo, Polymer 172, 415 (2019)Google Scholar
  5. 5.
    C. Wang, V. Murugadoss, J. Kong, Z. He, X. Mai, Q. Shao, Y. Chen, L. Guo, C. Liu, S. Angaiah, Z. Guo, Carbon 140, 696 (2018)Google Scholar
  6. 6.
    X. Gong, Y. Liu, Y. Wang, Z. Xie, Q. Dong, M. Dong, H. Liu, Q. Shao, N. Lu, V. Murugadoss, T. Ding, Z. Guo, Polymer 168, 131 (2019)Google Scholar
  7. 7.
    Z. Lin, B. Line, Z. Wang, S. Chen, C. Wang, M. Dong, Q. Gao, Q. Shao, T. Ding, H. Liu, Z. Gao, Chemcatchem. 11, 2217 (2019)Google Scholar
  8. 8.
    N. Wu, D. Xu, Z. Wang, F. Wang, J. Liu, W. Liu, Q. Shao, H. Liu, Q. Gao, Z. Guo, Carbon 145, 433 (2019)Google Scholar
  9. 9.
    K. Li, Z. Wang, Q. Wang, Q. Shao, V. Murugadoss, S. Wu, W. Liu, J. Liu, Q. Gao, Z. Gao, Dalton Trans. 48, 5193 (2019)Google Scholar
  10. 10.
    X.L. Luo, F. Pei, W. Wang, H.M. Qian, K.K. Miao, Z. Pan, Y.S. Chen, G.D. Feng, Micropor. Mesopor. Mater. 262, 148 (2018)Google Scholar
  11. 11.
    Z. Shi, C. Wu, Y. Wu, H. Liu, G. Xu, J. Deng, H. Gu, H. Liu, J. Zhang, A. Umar, Y. Ma, Z. Guo, Sci. Adv. Mater. 11, 699 (2019)Google Scholar
  12. 12.
    Z. Shi, C. Jia, D. Wang, J. Deng, G. Xu, C. Wu, M. Dong, Z. Gau, Int. J. Biol. Macromol. 133, 964 (2019)PubMedGoogle Scholar
  13. 13.
    H. Gu, X. Xu, J. Cai, S. Wei, H. Wei, H. Liu, D.P. Yong, Q. Shao, S. Wu, T. Diang, Z. Gau, Chem. Commun. 53, 11802 (2017)Google Scholar
  14. 14.
    G. Perot, M. Guisnet, J. Mol. Catal. 61, 173 (1990)Google Scholar
  15. 15.
    C.G.S. Lima, N.M. Moreira, M.W. Paixão, A.G. Corrêa, Curr. Opin. Green. Sustain. Chem. 15, 7 (2019)Google Scholar
  16. 16.
    Z. Shi, C. Wu, Y. Gu, Y. Liang, G. Xu, H. Liu, J. Zhang, H. Hou, J. Zhang, Z. Guo, Sci. Adv. Mater. 11, 1198 (2019)Google Scholar
  17. 17.
    A.R. Massah, R. Javad Kalbasi, A. Shafiei, Monatsh. Chem. 143, 643 (2012)Google Scholar
  18. 18.
    R. Estevez, I. Iglesias, D. Luna, F.M. Bautista, Molecules 22, 2206 (2017)PubMedCentralGoogle Scholar
  19. 19.
    H. Nur, G.L. Kee, H. Hamdan, T.M.I. Mahlia, J. Efendi, H.S.C. Metselaar, Int. J. Hydrogen Energy 37, 12513 (2012)Google Scholar
  20. 20.
    N. Krathumkhet, K. Vongjitpimol, T. Chuesutham, S. Changkhamchom, K. Phasuksom, A. Sirivat, K. Wattanakul, Solid State Ion. 319, 278 (2018)Google Scholar
  21. 21.
    H. Liu, S. Peng, L. Shu, T. Chen, T. Bao, R.L. Frost, Chemosphere 91, 1539 (2013)PubMedGoogle Scholar
  22. 22.
    A. Gaffer, A.A. Al Kahlawy, D. Aman, Egypt. J. Petrol. 26, 995 (2017)Google Scholar
  23. 23.
    A. Mesdaghinia, A. Azari, R. Nabizadeh Nodehi, K. Yaghmaeian, A.K. Bharti, S. Agarwal, V.K. Gupta, K. Sharafi, J. Mol. Liq. 233, 378 (2017)Google Scholar
  24. 24.
    D. Lin, X. Feng, Y. Wu, B. Ding, T. Lu, Y. Liu, X. Chen, D.C. Yang, Appl. Surf. Sci. 456, 140 (2018)Google Scholar
  25. 25.
    P. Abasian, M. Radmansouri, M. Habibi Jouybari, M. Vaez Ghasemi, A. Mohammadi, M. Irani, F. Sharifian Jazi, Int. J. Biol. Macromol. 121, 398 (2019)PubMedGoogle Scholar
  26. 26.
    S.V.H.S. Bhaskaruni, S. Maddila, K.K. Gangu, S.B. Jonnalagadda, Arab. J. Chem. (2017)Google Scholar
  27. 27.
    C.V.T. Vo, J.W. Bode, J. Org. Chem. 79, 2809 (2014)PubMedGoogle Scholar
  28. 28.
    V. Paragamian, M.B. Baker, B.M. Puma, J. Reale, J. Heterocycl. Chem. 5, 591 (1968)Google Scholar
  29. 29.
    T.A. Farghaly, M.A. Abdallah, Z.A. Muhammad, Res. Chem. Intermed. 41, 3937 (2015)Google Scholar
  30. 30.
    F.A. Bassyouni, S.M. Abu-Bakr, K.H. Hegab, W. El-Eraky, A.A.E. Beih, M.E.A. Rehim, Res. Chem. Intermed. 38, 1527 (2012)Google Scholar
  31. 31.
    M. Kalhor, N. Khodaparast, Res. Chem. Intermed. 41, 3235 (2015)Google Scholar
  32. 32.
    M. Kalhor, F. Rezaee-Baroonaghi, A. Dadras, Z. Zarnegar, Appl Organometal Chem. 33, e4784 (2019)Google Scholar
  33. 33.
    J.J. Vanden-Eynde, F. Delfosse, A. Mayence, Y.V. Haverbeke, Tetrahedron 51, 5813 (1995)Google Scholar
  34. 34.
    V.A. Ozeryanskii, E.A. Filatova, V.I. Sorokin, A.F. Pozharskii, Russ. Chem. Bull. 50, 846 (2001)Google Scholar
  35. 35.
    M. Kalhor, Org. Chem. Res. 1, 59 (2015)Google Scholar
  36. 36.
    M. Kalhor, S. Banibairami, S.A. Mirshokraie, Green Chem. Lett. Rev. 11, 334 (2018)Google Scholar
  37. 37.
    J. Safari, Z. Zarnegar, New J. Chem. 38, 358 (2014)Google Scholar
  38. 38.
    F. Rouquerol, J. Rouquerol, K.S.W. Sing, Adsorption by Powder and Porous Solids (Academic Press, San Diego, 1999), p. 1Google Scholar
  39. 39.
    M.M. Khakzad-Siuki, M. Bakavoli, H. Eshghi, Appl. Orgmet. Chem. 32, e4290 (2018)Google Scholar
  40. 40.
    M.A. Bodaghifard, S. Asadbegi, Z. Bahrami, J. Iran. Chem. Soc. 14, 365 (2017)Google Scholar
  41. 41.
    O. Maloshitskaya, J. Sinkkonen, V.V. Ovcharenko, K.N. Zelenin, K. Pihlaja, Tetrahedron 60, 6913 (2004)Google Scholar
  42. 42.
    F.K. Behbahani, F.M. Golchin, J. Taibah. Univ. Sci. 11, 85 (2017)Google Scholar
  43. 43.
    A. Mobinikhaledi, N. Foroughifar, Turk. J. Chem. 33, 555 (2009)Google Scholar
  44. 44.
    C.K. Wu, T.J. Teau-Jiuan Liou, H.Y. Wei, P.S. Tsai, D.Y. Yang, Tetrahedron 70, 8219 (2014)Google Scholar
  45. 45.
    A. Farrokhi, K. Keivan Ghodrati, I. Yavari, Catal. Commun. 63, 41 (2015)Google Scholar
  46. 46.
    K.M. Salih, H.J. Azeez, Res. Pharm. Biotechnol. 51, 1 (2014)Google Scholar
  47. 47.
    A. Mobinikhaledi, P. Steel, Synth. React. Inorg. Metal-Org. Nano-Met. Chem. 39, 133 (2009)Google Scholar
  48. 48.
    A. Bamoniri, B.B.F. Mirjalili, S. Saleh, RSC Adv. 8, 6178 (2018)Google Scholar
  49. 49.
    A. Mobinikhaledi, F. Sasani, A. Hamta, S.M. Shariatzadeh, Bulg. Chem. Commun. 45, 353 (2013)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistryPayame Noor UniversityTehranIran

Personalised recommendations