Advertisement

Synthesis of polymer-supported Brønsted acid-functionalized Zn–porphyrin complex, knotted with benzimidazolium moiety for photodegradation of azo dyes under visible-light irradiation

  • 26 Accesses

Abstract

A polymer-supported Brønsted acid-functionalized Zn–porphyrin complex, knotted with benzimidazolium moiety (PSBAZnPP), has been synthesized and characterized by Fourier transform nuclear magnetic resonance (FT-NMR) and Fourier transform infrared spectroscopy (FTIR). The thermal stability was determined by thermogravimetric analysis (TGA), and surface morphology and elemental composition were investigated by scanning electron microscopy and energy-dispersive spectroscopy (SEM/EDAX). The heterogeneous PSBAZnPP showed high efficacy as a photocatalyst for degradation of azo dyes, such as methyl red (MR), methyl orange (MO) and Congo red (CR), in the presence of visible-light irradiation at ambient condition using atmospheric air/H2O2. The concentration of the dyes was measured by UV–visible spectroscopy, and the degradation of the dyes was confirmed by GC–MS analysis. Further decolorization and degradation of MO were confirmed by using ultra-high-pressure liquid chromatography (UPLC). The optimum degradation was achieved by adding 10 mg catalyst for all azo dyes for 60 min in the presence of air. The effect of scavengers was studied to indicate the most active species generated during photocatalysis. PSBAZnPP furnished a good response toward the photodegradation of MR, MO and CR under optimized conditions. Finally, the mechanism of photocatalytic degradation process was suggested. Relevant active species produced in the PSBAZnPP/H2O2 or PSBAZnPP/air system under visible light were recognized by using different types of scavengers, viz. EDTA, p-benzoquinone (PBQ), terephthalic acid (TPA), sodium azide and sodium nitrate, for determination of formation of holes, \({\text{O}}_{2}^{ \cdot }\), \({\text{OH}}^{ \cdot }\), \({}^{1}{\text{O}}_{2}\) and an aqueous electron (e), respectively. The comparative acidity of the synthesized PSBAZnPP catalyst was measured using UV–Vis and then equated to relations of the Hammett value (H0). The efficiency of catalyst correlates with a considerable proton level required for degradation of organic dyes.

Graphic abstract

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Y. Yuan, H. Lu, Z. Ji, J. Zhong, M. Ding, D. Chen, Y. Li, W. Tu, D. Cao, Z. Yu, Z. Zou, Chem. Eng. J. 275, 8 (2015)

  2. 2.

    S. Xu, Y. Lv, X. Zeng, D. Cao, Chem. Eng. J. 323, 502 (2017)

  3. 3.

    Y. Pi, X. Li, Q. Xia, J. Wu, Y. Li, J. Xiao, Z. Li, Chem. Eng. J. 337, 351 (2018)

  4. 4.

    Y. Wei, Y. Zhu, Y. Jiang, Chem. Eng. J. 356, 915 (2019)

  5. 5.

    S. Pirillo, E.H. Rueda, M.L. Ferreira, Chem. Eng. J. 204–205, 65 (2012)

  6. 6.

    M. Gmurek, J.S. Miller, S. Ledakowicz, Chem. Eng. J. 210, 417 (2012)

  7. 7.

    J. Zhang, M. Feng, Y. Jiang, M. Hu, S. Li, Q. Zhai, Chem. Eng. J. 191, 236 (2012)

  8. 8.

    H. Ghafuri, Z. Movahedinia, R. Rahimi, H.R.E. Zand, RSC Adv. 5, 60172 (2015)

  9. 9.

    R.V. Kandisa, K.V.N. Saibaba, J. Bioremediation Biodegrad. 07 (2016)

  10. 10.

    J.M. Dąbrowski, B. Pucelik, M.M. Pereira, L.G. Arnaut, W. MacYk, G. Stochel, RSC Adv. 5, 93252 (2015)

  11. 11.

    H. Xu, J.X. Xiang, P. Wu, Y.F. Lu, S. Zhang, Z.Y. Xie, Z.Z. Gu, RSC Adv. 6, 45617 (2016)

  12. 12.

    M.O. Ansari, M.M. Khan, S.A. Ansari, M.H. Cho, New J. Chem. 39, 8381 (2015)

  13. 13.

    J.H. Castillo-Ledezma, J.L.S. Salas, A. López-Malo, E.R. Bandala, Eur. Food Res. Technol. 233, 825 (2011)

  14. 14.

    G. Cernuto, N. Masciocchi, A. Cervellino, G.M. Colonna, A. Guagliardi, J. Am. Chem. Soc. 133, 3114 (2011)

  15. 15.

    D. Chatterjee, S. Dasgupta, J. Photochem. Photobiol. C Photochem. Rev. 6, 186 (2005)

  16. 16.

    Y.I. Choi, S. Lee, S.K. Kim, Y. Il Kim, D.W. Cho, M.M. Khan, Y. Sohn, J. Alloys Compd. 675, 46 (2016)

  17. 17.

    M. Fujitsuka, T. Majima, J. Photochem. Photobiol. C Photochem. Rev. 35, 38 (2018)

  18. 18.

    M. Silva, M.E. Azenha, M.M. Pereira, H.D. Burrows, M. Sarakha, C. Forano, M.F. Ribeiro, A. Fernandes, Appl. Catal. B Environ. 100, 1 (2010)

  19. 19.

    Q. Wu, X. Hao, X. Feng, Y. Wang, Y. Li, E. Wang, X. Zhu, X. Pan, Inorg. Chem. Commun. 22, 137 (2012)

  20. 20.

    M. Cheng, W. Ma, C. Chen, J. Yao, J. Zhao, Appl. Catal. B Environ. 65, 217 (2006)

  21. 21.

    B. Li, L. Shao, B. Zhang, R. Wang, M. Zhu, X. Gu, J. Colloid Interface Sci. 505, 653 (2017)

  22. 22.

    B. Li, Y. Hao, X. Shao, H. Tang, T. Wang, J. Zhu, S. Yan, J. Catal. 329, 368 (2015)

  23. 23.

    B. Li, R. Wang, X. Shao, L. Shaob, B. Zhang, Inorg. Chem. Front. 4, 2088 (2017)

  24. 24.

    B. Li, Y. Hao, B. Zhang, X. Shao, L. Hu, Applied Catal. A Gen. 531, 1 (2017)

  25. 25.

    Y. Xiao, X. Tao, G. Qiu, Z. Dai, P. Gao, B. Li, J. Colloid Interface Sci. 550, 99 (2019)

  26. 26.

    M. Rabbani, M. Heidari-Golafzani, R. Rahimi, Mater. Chem. Phys. 179, 35 (2016)

  27. 27.

    Z. Zhang, H. Liu, J. Xu, N. Zhang, Photochem. Photobiol. Sci. 16, 1194 (2017)

  28. 28.

    S. Murphy, C. Saurel, A. Morrissey, J. Tobin, M. Oelgemöller, K. Nolan, Appl. Catal. B Environ. 119–120, 156 (2012)

  29. 29.

    H. Wang, D. Zhou, S. Shen, J. Wan, X. Zheng, L. Yu, D.L. Phillips, RSC Adv. 4, 28978 (2014)

  30. 30.

    Y. Li, Q. Duan, H. Wang, B. Gao, N. Qiu, Y. Li, J. Photochem. Photobiol. A Chem. 356, 370 (2018)

  31. 31.

    N. Qiu, Y. Li, S. Han, G. Cui, T. Satoh, T. Kakuchi, Q. Duan, J. Photochem. Photobiol. A Chem. 283, 38 (2014)

  32. 32.

    J.H. Cai, J.W. Huang, H.C. Yu, L.N. Ji, J. Taiwan Inst. Chem. Eng. 43, 958 (2012)

  33. 33.

    A.G. Khiratkar, P.N. Muskawar, P.R. Bhagat, RSC Adv. 6, 105087 (2016)

  34. 34.

    K.R. Balinge, A.G. Khiratkar, P.R. Bhagat, J. Mol. Liq. 242, 1085 (2017)

  35. 35.

    K.R. Balinge, A.G. Khiratkar, P.N. Muskawar, K. Thenmozhi, P.R. Bhagat, Res. Chem. Intermed. 44, 2075 (2018)

  36. 36.

    P.N. Muskawar, S. Senthil Kumar, P.R. Bhagat, J. Mol. Catal. A Chem. 380, 112 (2013)

  37. 37.

    R. Rahimi, M.M. Moghaddas, S. Zargari, J. Sol–Gel. Sci. Technol. 65, 420 (2013)

  38. 38.

    H. Lv, X. Zhao, H. Niu, S. He, Z. Tang, F. Wu, J.P. Giesy, J. Hazard. Mater. 369, 494 (2019)

  39. 39.

    K.S. Min, R.S. Kumar, J.H. Lee, K.S. Kim, S.G. Lee, Y.A. Son, Dye. Pigment. 160, 37 (2019)

  40. 40.

    Q. Li, T. Zhao, M. Li, W. Li, B. Yang, D. Qin, K. Lv, X. Wang, L. Wu, X. Wu, J. Sun, Appl. Catal. B Environ. 249, 1 (2019)

  41. 41.

    Z. Feng, J. Yu, J. Kong, T. Wang, Chem. Eng. J. 294, 236 (2016)

  42. 42.

    P. Kharazi, R. Rahimi, M. Rabbani, Mater. Res. Bull. 103, 133 (2018)

Download references

Acknowledgements

The authors gratefully acknowledge VIT-SIF SAS and the SEM Facility at SBST VIT, Vellore, for instrumentation facilities. The authors also thank VIT for providing ‘VIT SEED GRANT’ for carrying out this research work. We kindly acknowledge VIT Management, Department of Chemistry (SAS), “Smart Materials Laboratory for Biosensing and Catalysis.” We would also like to extend our thanks to Mr. Sagar Krushnarao Datir for his valuable advice and suggestions.

Author information

Correspondence to Pundlik R. Bhagat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4639 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khajone, V.B., Bhagat, P.R. Synthesis of polymer-supported Brønsted acid-functionalized Zn–porphyrin complex, knotted with benzimidazolium moiety for photodegradation of azo dyes under visible-light irradiation. Res Chem Intermed 46, 783–802 (2020). https://doi.org/10.1007/s11164-019-03990-2

Download citation

Keywords

  • Zinc–porphyrin
  • Benzimidazolium
  • Azo dye degradation
  • Photocatalyst
  • Heterogeneous
  • Brønsted acid
  • Visible light
  • Hammett acidity