Impacts of nanoscale zero-valent iron on nitrite accumulation performance of nitritation granular sludges with different spatial morphologies and its biosorption behavior


To explore the potential impacts of nanoscale zero-valent iron (nZVI) particles on nitrite accumulation performance of nitritation granular sludge (NGS), two types of NGS (NGSA and NGSH) with different spatial morphologies were employed to exposure under a wide dosage of nZVI in batch tests. The biosorption behavior of nZVI was also investigated by determining adsorption isotherm. Results showed that the ecotoxic effect of nZVI was ascribed to its fast adsorption to the granules. Although NGSA and NGSH shared a similar bacterial community structure dominated by genus Nitrosomonas based on high-throughput pyrosequencing, the compact and small granules of NGSA showed a stronger tolerance for nZVI exposure than NGSH with loose spatial structure. The 50% inhibition dosage of nZVI for ammonium-oxidizing bacteria activity in NGSA and NGSH was 88.5 and 21.3 mg g−1 VSS, respectively. As a crucial self-protection mechanism of microbes, the secretion of extracellular polymeric substances was dramatically enhanced with nZVI exposure at a low dosage, and a simultaneous decrease in both extracellular polymeric substances contents and ammonium-oxidizing activity of NGS was observed with a high accumulation of total iron in sludge phase. Overall, the results suggested that ammonium-oxidizing bacteria in granules were susceptible to inhibition by nZVI exposure, and release of engineered nanoparticles into wastewater treatment system increased the risk of failure in autotrophic nitrogen removal process.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    S.K. Brar, M. Verma, R.D. Tyagi, R.Y. Surampalli, Waste Manag. 30, 3 (2010)

  2. 2.

    R.A. Crane, T.B. Scott, J. Hazard. Mater. 211–212, 211 (2012)

  3. 3.

    M. Emadi, M. Savasari, M.A. Bahmanyar, P. Biparva, Res. Chem. Intermed. 45, 4261 (2016)

  4. 4.

    F.L. Fu, D.D. Dionysiou, L. Hong, J. Hazard. Mater. 267, 194 (2014)

  5. 5.

    D.B. Wang, Y.G. Chen, Crit. Rev. Biotechnol. 36, 816 (2016)

  6. 6.

    J.W. Chen, Z.M. Xiu, G.V. Lowry, P.J.J. Alvarez, Water Res. 45, 1995 (2011)

  7. 7.

    D.L. Wu, Y.H. Shen, A.Q. Ding, M.Y. Qiu, Q. Yang, S.S. Zheng, Environ. Technol. 34, 2663 (2013)

  8. 8.

    Y.J. Ma, J.W. Metch, E.P. Vejerano, I.J. Miller, E.C. Leon, L.C. Marr, P.J. Vikesland, A. Pruden, Water Res. 68, 87 (2015)

  9. 9.

    Z.H. Liang, A. Das, Z.Q. Hu, Water Res. 44, 5432 (2010)

  10. 10.

    Y.G. Chen, Y.L. Su, X. Zheng, H. Chen, H. Yang, Water Res. 46, 4379 (2012)

  11. 11.

    S. Matsumoto, M. Katoku, G. Saeki, A. Terada, Y. Aoi, S. Tsuneda, P. Cristian, M.V. Loosdrecht, Environ. Microbiol. 12, 192 (2010)

  12. 12.

    Y.H. Liang, D. Li, H.P. Zeng, C.D. Zhang, J. Zhang, Bioresour. Technol. 196, 741 (2015)

  13. 13.

    J.F. Wang, Z.Y. Zhang, F.Y. Qian, Y.L. Shen, Z.K. Qi, X.Q. Ji, E.M.L. Kajamisso, Bioresour. Technol. 256, 170 (2018)

  14. 14.

    J.F. Wang, F.Y. Qian, X.P. Liu, W.R. Liu, S.Y. Wang, Y.L. Shen, Appl. Microbiol. Biotechnol. 100, 9381 (2016)

  15. 15.

    A.D. Eaton, A.E. Greenberg, L.S. Clesceri, M.A.H. Franson, Am. J. Public Health 56, 387 (1998)

  16. 16.

    C.Y. Wu, Y.Z. Peng, S.Y. Wang, Y. Ma, Water Res. 44, 807 (2010)

  17. 17.

    J.P. Bassin, R. Kleerebezem, M. Dezotti, M.C.M.V. Loosdrecht, Chemosphere 89, 1161 (2012)

  18. 18.

    S.S. Adav, D.J. Lee, J. Hazard. Mater. 154, 1120 (2008)

  19. 19.

    F. Qian, X. Chen, J. Wang, Y. Shen, J. Gao, J. Mei, J. Microbiol. Biotechnol. 27, 1798 (2017)

  20. 20.

    S.J. You, Y.P. Tsai, R.Y. Huang, J. Hazard. Mater. 165, 987 (2009)

  21. 21.

    A. Hammaini, F. González, A. Ballester, M.L. Blázquez, J.A. Muñoz, J. Environ. Manag. 84, 419 (2007)

  22. 22.

    I. Cydzik-Kwiatkowska, Wojnowska-Baryła. Folia Microbiol. 56, 201 (2011)

  23. 23.

    R.M.L.D. Rathnayake, M. Oshiki, S. Ishii, T. Segawa, H. Satoh, S. Okabe, Bioresour. Technol. 197, 15 (2015)

  24. 24.

    J.S. Lu, T.T. Lian, J.F. Su, Res. Chem. Intermed. 44, 6011 (2018)

  25. 25.

    L.G. Cullen, E.L. Tilston, G.R. Mitchell, C.D. Collins, L.J. Shaw, Chemosphere 82, 1675 (2011)

  26. 26.

    Z.Q. Hu, K. Chandran, D. Grasso, B.F. Smets, Water Res. 38, 3949 (2004)

  27. 27.

    M.A. Kiser, H. Ryu, H. Jang, K. Hristovski, P. Westerhoff, Water Res. 44, 4105 (2010)

  28. 28.

    I.D.S. Henriques, N.G. Love, Water Res. 41, 4177 (2007)

  29. 29.

    F. Gómez-Rivera, J.A. Field, D. Brown, R. Sierra-Alvarez, Bioresour. Technol. 108, 300 (2012)

  30. 30.

    S.S. Adav, D.J. Lee, K.Y. Show, J.H. Tay, Biotechnol. Adv. 26, 411 (2008)

  31. 31.

    T.T. More, J.S.S. Yadav, S. Yan, R.D. Tyagi, R.Y. Surampalli, J. Environ. Manag. 144, 1 (2014)

  32. 32.

    N. Joshi, B.T. Ngwenya, C.E. French, J. Hazard. Mater. 241–242, 363 (2012)

Download references


This study was supported by the Major Science and Technology Projects for water pollution control and treatment of China (2017ZX07205002), the National Natural Science Foundation of China (51608341), the Natural Science Foundation of Jiangsu Province, China (BK20150284). Authors also acknowledge the support from the Qinglan Project for Jiangsu Colleges and Universities, China.

Author information

Correspondence to Feiyue Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 277 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Sheng, J., Qian, F. et al. Impacts of nanoscale zero-valent iron on nitrite accumulation performance of nitritation granular sludges with different spatial morphologies and its biosorption behavior. Res Chem Intermed 46, 769–781 (2020) doi:10.1007/s11164-019-03989-9

Download citation


  • Nanoscale zero-valent iron
  • Nitritation granular sludge
  • Ammonium-oxidizing activity
  • Biosorption
  • Extracellular polymeric substances