Research on Chemical Intermediates

, Volume 46, Issue 1, pp 681–700 | Cite as

Cu(OAc)2 entrapped on ethylene glycol-modified melamine–formaldehyde polymer as an efficient heterogeneous catalyst for Suzuki–Miyaura coupling reactions

  • Velu Sadhasivam
  • Balakrishnan Sankar
  • Ganesan Elamathi
  • Mathappan Mariyappan
  • Ayyanar SivaEmail author


This work is described as an environmental friendly approach for Cu(OAc)2 entrapped on ethylene glycol-modified melamine–formaldehyde-based polymeric material (Cu@MCOP) which has been successfully synthesized by simple approaches using commercially available starting materials via solvothermal techniques and without using any toxic reagents and chemicals. The structural, morphological, physicochemical characteristics and catalytic activity of the heterogeneous catalyst (Cu@MCOP) were analyzed by various instrumental methods including powder X-ray diffraction, FT-IR, UV-DRS, X-ray photoelectron spectroscopy, SEM and elemental mapping which have been used to authenticate the polymeric materials Cu@MCOP. The catalytic performance of Cu@MCOP as solid heterogeneous catalyst was evaluated in synthesis of various biphenyl derivatives through Suzuki–Miyaura cross-coupling reactions of various aryl halides with substituted organoboranes under normal reaction conditions. Furthermore, the copper catalyst was easily available, low cost, cheap and best instead of palladium, which shows good catalytic activity and excellent yield (up to 86%); the catalyst can be separated easily and recycled for more than five times.

Graphic abstract


Suzuki–Miyaura Melamine Heterogeneous Shelton test Covalent organic polymer 



AS and VS acknowledge the financial support of the Department of Science and Technology, SERB, Extramural Major Research Project (Grant No. EMR/2015/000969), Council of Scientific and Industrial Research (CSIR), HRDG, File No. 01(2901)/17/EMR-II, New Delhi, Department of Science and Technology DST/TM/CERI/C130(G), New Delhi, India. Further, VS acknowledges the financial support of the CSIR, New Delhi, for providing SRF file No. 124065/2k17/1, 09/201(0420)/18-EMR-I, New Delhi. We also acknowledge to UPE, DST-FIST for providing instrumental support.

Supplementary material

11164_2019_3984_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1599 kb)


  1. 1.
    B.Y. No, M.G. Kim, J. Appl. Polym. Sci. 93, 2559 (2004)Google Scholar
  2. 2.
    Y.S. He, X. Liu, Y.Z. Chen, L.M. Qu, Appl.Mater.Inter. 42, 1482 (2013)Google Scholar
  3. 3.
    A. Baliani, V. Peal, L. Gros, R. Brun, M. Kaiser, M.P. Barrett, I.H. Gilbert, Org. Biomol. Chem. 7, 1154 (2009)PubMedGoogle Scholar
  4. 4.
    P. Puthiaraj, Y.M. Chung, W.S. Ahn, J. Mol. Catal. 441, 1 (2017)Google Scholar
  5. 5.
    Z. Zhang, J. Long, L. Yang, W. Chen, W. Dai, X. Fu, X. Wang, Chem. Sci. 2, 1826 (2011)Google Scholar
  6. 6.
    Y. Yao, B. Zhang, J. Shi, Q. Yang, Appl. Mater. Interfaces 7, 7413 (2015)Google Scholar
  7. 7.
    R.L. Tseng, F.C. Wu, R.S. Juang, Sep. Purif. Technol. 140, 53 (2015)Google Scholar
  8. 8.
    Z. Lv, C. Liang, J. Cui, Y. Zhang, S. Xu, RSC Adv. 5, 18213 (2015)Google Scholar
  9. 9.
    Y. Wang, H. Xuan, G. Lin, F. Wang, Z. Chen, X. Dong, J. Power Sources 319, 262 (2016)Google Scholar
  10. 10.
    F. Ma, H. Zhao, L. Sun, Q. Li, L. Huo, T. Xia, S. Gao, G. Pang, Z. Shi, S.J. Feng, J. Mater. Chem. 22, 13464 (2012)Google Scholar
  11. 11.
    M. Li, Y. Zhang, L. Yang, Y. Liu, J. Yao, Electrochim. Acta 166, 310 (2015)Google Scholar
  12. 12.
    G. Zhang, C. Ni, L. Liu, G. Zhao, F. Finaa, J.T.S. Irvine, J. Mater. Chem. A 3, 15413 (2015)Google Scholar
  13. 13.
    J. Wang, H. Xu, X. Qian, Y. Dong, J. Gao, G. Qian, J. Yao, Chem. Asian J. 10, 1276 (2015)PubMedGoogle Scholar
  14. 14.
    R. Sasikumar, P. Ranganathan, S.M. Chen, P. Sireesha, T.W. Chen, P. Veerakumar, S.P. Rwei, T.J. Kavitha, Colloid Interface Sci. 494, 82 (2017)Google Scholar
  15. 15.
    Q. Zhuanga, L. Suna, Y. Ni, Talanta 164, 458 (2017)Google Scholar
  16. 16.
    X. Jiang, F. Tian, F. Yang, X. Dou, J. Wang, Y. Song, Sens. Actuators B Chem. 238, 605 (2017)Google Scholar
  17. 17.
    D. Schwarza, J. Weber, Polymer 155, 83 (2018)Google Scholar
  18. 18.
    L.X. Yin, J. Liebscher, Chem. Rev. 7, 133 (2007)Google Scholar
  19. 19.
    J. Albaneze-Walker, J.A. Murry, A. Soheili, S. Ceglia, S.A. Springfield, C. Bazaral, P.G. Dormer, D.L. Hughes, Tetrahedron 61, 6330 (2005)Google Scholar
  20. 20.
    A. Meijere, F. Diderich, Metal-Catalyzed Cross-Coupling Reactions, 2nd edn. (Wiley-VCH, Weinheim, 2008)Google Scholar
  21. 21.
    A. Yokoyama, H. Suzuki, Y. Kubota, K. Ohuchi, H. Higashimura, T. Yokozawa, J. Am. Chem. Soc. 129, 7236 (2007)PubMedGoogle Scholar
  22. 22.
    H. Noguchi, K. Hojo, M. Suginome, J. Am. Chem. Soc. 129, 758 (2007)PubMedGoogle Scholar
  23. 23.
    H. Veisi, M. Ghorbani, S. Hemmati, Mat. Sci. Eng. C 98, 584 (2019)Google Scholar
  24. 24.
    H. Veisi, A.A. Manesh, N. Eivazia, A.R. Faraji, RSC Adv. 5, 20098 (2015)Google Scholar
  25. 25.
    H. Veisi, S.A. Mirshokraie, H. Ahmadian, J. Biol. Macromol. 108, 419 (2018)Google Scholar
  26. 26.
    R.G. Vaghei, S. Hemmati, H. Veisi, Tetrahedron Lett. 54, 7095 (2013)Google Scholar
  27. 27.
    H. Veisi, T. Tamoradi, B. Karmakar, P. Mohammadi, S. Hemmati, Mat. Sci. Eng. C 104, 109919 (2019)Google Scholar
  28. 28.
    H. Veisi, M. Pirhayati, A. Kakanejadifard, P. Mohammadi, M.R. Abdi, J. Gholami, S. Hemmati, Chem. Sel. 14, 1820 (2018)Google Scholar
  29. 29.
    H. Veisi, P.M. Biabri, H. Falahi, Tetrahedron Lett. 58, 3482 (2017)Google Scholar
  30. 30.
    E. Farzad, H. Veisi, J. Ind. Eng. Chem. 60, 114 (2018)Google Scholar
  31. 31.
    H. Veisi, S.A. Kamangar, P. Mohammadi, S. Hemmati, Appl. Org. Metal. Chem. 33, 104909 (2019)Google Scholar
  32. 32.
    H. Veisi, S. Hemmati, P. Safarimehr, J. Catal. 365, 204 (2018)Google Scholar
  33. 33.
    H. Veisi, P. Safarimehr, S. Hemmati, Mat. Sci. Eng. C 96, 310 (2019)Google Scholar
  34. 34.
    G.Y. Li, Angew. Chem. Int. Ed. 40, 1513 (2001)Google Scholar
  35. 35.
    A. Verma, K. Tomar, P.K. Bharadwaj, Inorg. Chem. 58, 1003 (2019)PubMedGoogle Scholar
  36. 36.
    S.E. Hooshmand, B. Heidari, R. Sedghi, R.S. Varma, Green Chem. 21, 381 (2019)Google Scholar
  37. 37.
    G. Evano, N. Blanchard, Wiley (2013)Google Scholar
  38. 38.
    M. Rajabzadeh, R. Khalifeh, H. Eshghi, M. Bakavoli, J. Catal. 360, 261 (2018)Google Scholar
  39. 39.
    A. Mohammadinezhad, B. Akhlaghinia, Green Chem. 19, 5625 (2017)Google Scholar
  40. 40.
    J. Qiao, W. Zhu, G. Zhuo, H. Zhou, X. Jiang, J. Chin, Catalysis 29, 209 (2008)Google Scholar
  41. 41.
    S.K. Gurung, S. Thapa, A. Kafle, D.A. Dickie, R. Giri, Org. Lett. 16, 1264 (2014)PubMedGoogle Scholar
  42. 42.
    V. Sadhasivam, R. Balasaravanan, C. Chithiraikumar, A. Siva, Chem. Sel. 2, 1063 (2017)Google Scholar
  43. 43.
    V. Sadhasivam, M. Mariyappan, M. Harikrishnan, C. Chithiraikumar, S. Murugesan, A. Siva, Res. Chem. Intermed. 44, 2853 (2018)Google Scholar
  44. 44.
    V. Sadhasivam, R. Balasaravanan, A. Siva, Appl. Organomet. Chem. 33, e4994 (2019).Google Scholar
  45. 45.
    V. Sadhasivam, M. Mariyappan, A. Siva, Chem. Sel. 3, 13442 (2018)Google Scholar
  46. 46.
    S. Zhang, W. Ji, Y. Han, X. Gu, H. Li, J. Sun, J. Appl. Polym. Sci. 135, 1 (2018)Google Scholar
  47. 47.
    J. Liu, J. Liu, L. Cui, Z. Zhao, Y. Li, Y. Wei, Q. Sun, J. Environ. Sci. 48, 45 (2018)Google Scholar
  48. 48.
    V. Sadhasivam, R. Balasaravanan, C. Chithiraikumar, A. Siva, ChemCatChem 10, 3833 (2018)Google Scholar
  49. 49.
    J.A. Faniran, K.S.J. Patel, J. Inorg. Nucl. Chem. 36, 2261 (1974)Google Scholar
  50. 50.
    S. Barua, G. Das, L. Aidew, A.K. Buragohainc, N. Karak, RSC Adv. 3, 14997 (2013)Google Scholar
  51. 51.
    Y. Han, M. Zhang, Y.Q. Zhang, Z.H. Zhang, Green Chem. 20, 4891 (2018)Google Scholar
  52. 52.
    P. Puthiaraj, K. Pitchumani, Chem. Eur. J. 20, 8761 (2014)PubMedGoogle Scholar
  53. 53.
    P. Muthu Kumar, V. Vinod Kumar, G. Rajendra Kumar Reddy, P. Suresh Kumar, S. Philip Anthony, Catal. Sci. Technol. 8, 1414 (2018)Google Scholar
  54. 54.
    J.C. Wang, Y.H. Hu, G.J. Chen, Y.B. Dong, Chem. Commun. 52, 13116 (2016)Google Scholar
  55. 55.
    G.B. Bidita Varadwaj, S. Rana, K.M. Parida, RSC Adv. 3, 7570 (2013)Google Scholar
  56. 56.
    J. Wei, P. Hing, Z.Q. Mo, Surf. Interface Anal. 28, 208 (1999)Google Scholar
  57. 57.
    B. Putz, G. Milassin, Y. Butenko, B. Volker, C. Gammer, C. Semprimoschnig, M.J. Cordill, Surf. Coat. Technol. 332, 368 (2017)Google Scholar
  58. 58.
    T. Flessner, S.J. Doye Prakt, Chemistry 341, 18 (1999)Google Scholar
  59. 59.
    K. Said, R.B. Salem, Adv. Chem. Eng. Sci. 6, 111 (2016)Google Scholar
  60. 60.
    N. Nakasuka, K. Azuma, M. Tanaka, Inorg. Chim. Acta 238, 83 (1995)Google Scholar
  61. 61.
    S.Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.G. Song, C.Y. Su, W. Wang, J. Am. Chem. Soc. 133, 19816 (2011)PubMedGoogle Scholar
  62. 62.
    G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mulhaupt, J. Am. Chem. Soc. 131, 8262 (2009)PubMedGoogle Scholar
  63. 63.
    Y. Li, X.A. Hong, D.M. Collard, M.A. El-Sayed, Org. Lett. 2, 2385 (2000)PubMedGoogle Scholar
  64. 64.
    J.Z. Deng, D.V. Paone, A.T. Ginnetti, H. Kurihara, S.D. Dreher, S.A. Weissman, S.R. Stauffer, C.S. Burgey, Org. Lett. 11, 345 (2000)Google Scholar
  65. 65.
    S.L. Zultansk, G.C. Fu, J. Am. Chem. Soc. 135, 624 (2013)Google Scholar
  66. 66.
    J.H. Li, J.L. Li, D.P. Wang, S.F. Pi, Y.X. Xie, M.B. Zhang, X.C. Hu, J. Org. Chem. 72, 2053 (2007)PubMedGoogle Scholar
  67. 67.
    M.B. Thathagar, J. Beckers, G. Rothenberg, J. Am, Chem. Soc. 124, 11858 (2002)Google Scholar
  68. 68.
    A. Klapars, S.L. Buchwald, J. Am. Chem. Soc. 124, 14844 (2002)PubMedGoogle Scholar
  69. 69.
    R. Shang, Y. Fu, Y. Wang, Q. Xu, H.Z. Yu, L. Liu, Angew. Chem. Int. Ed. 48, 9350 (2009)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Supramolecular and Organometallic Chemistry Lab, Department of Inorganic Chemistry, School of ChemistryMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations