Research on Chemical Intermediates

, Volume 46, Issue 1, pp 639–660 | Cite as

Stirring-ageing technique to develop zirconium-pillared bentonite clay along with its surface profiling using various spectroscopic techniques

  • Harsha Mahadevan
  • K. Anoop KrishnanEmail author
  • Renjith R. Pillai
  • Sandhya Sudhakaran


The pillared clays are getting wide attention due to the easiness in tailoring their surface for customized applications. In our laboratory, we have adopted a novel synthetic route to pillar zirconium species within intercalation spaces of bentonite clay through stirring-ageing technique and prepared the zirconium-pillared bentonite clay (ZPBC). A series of experiments conducted to optimize the stirring-ageing time span revealed that 2–4 h span is sufficient for getting a good yield of ZPBC. The synthesized ZPBC was characterized using certain well-developed sophisticated techniques to obtain their physical, structural and morphological properties. The high surface area 109 m2 g−1 noticed for ZPBC is suitable in retaining the chemical moieties of special interest during pollutant removal processes. X-ray fluorescence studies revealed that there is an increase in wt% of Zr (4.76%) in pillared clay compared to Na-bentonite which indicates that Zr has been successfully loaded on the surface of parent clay during pillarization. The mineralogical composition and the gradual changes in the interlayer spacing of parent and pillared clay are well established using X-ray diffraction technique. The Raman spectrum identifies changes in the lattice vibration modes of ZPBC as pillaring takes place. The surface topographical changes that occurred in clay after modification were revealed from the scanning electron microscopy images. The prepared ZPBC were tested successfully for the removal of phosphate from aqueous solution and obtained a maximum adsorption capacity 58.83 mg g−1 at 30 °C.


Zirconium pillaring X-ray fluorescence Raman spectroscopy Bentonite clay Phosphate adsorption 



We are thankful to Dr. N. Purnachandra Rao, Director, NCESS, for providing laboratory and knowledge resource facilities. The instrumental facilities in NCESS under SWQM (Sea Water Quality Monitoring) programme funded by ICMAM, Ministry of Earth Sciences and Central Chemical Laboratory (CCL), is also acknowledged. The Raman spectra provided by the Geo Fluids Research Laboratory (GFRL) in NCESS is highly appreciated. The authors are also thankful to the X-RF, X-RD and SEM–EDS laboratories in NCESS for providing the respective spectral data. The particle size and surface area analysis was carried out in Particle Size Analysis Laboratory, NCESS, and their service is also acknowledged.


  1. 1.
    X. Liu, X. Xu, J. Sun, A. Alsaedi, T. Hayath, J. Li, X. Wang, Chem. Eng. J. 343, 217 (2018)CrossRefGoogle Scholar
  2. 2.
    X. Liu, J. Sun, X. Xu, A. Alsaedi, T. Hayat, J. Li, Chem. Eng. J. 360, 941 (2019)CrossRefGoogle Scholar
  3. 3.
    X. Liu, J. Wu, S. Zhang, C. Ding, G. Sheng, A. Alsaedi, T. Hayat, J. Li, Y. Song, ACS Sustain. Chem. Eng. 7, 12 (2019)Google Scholar
  4. 4.
    S. Duan, X. Xu, X. Liu, Y. Wang, T. Hayat, A. Alsaedi, Y. Meng, J. Li, J. Colloid Interface Sci. 513, 92 (2018)PubMedCrossRefGoogle Scholar
  5. 5.
    Z. Chen, J. Li, Z. Cheng, S. Zuo, App. Clay Sci. 163, 227 (2018)CrossRefGoogle Scholar
  6. 6.
    Z. Cheng, Z. Chen, J. Li, S. Zuo, P. Yang, Appl. Surf. Sci. 459, 32 (2018)CrossRefGoogle Scholar
  7. 7.
    J. Li, M. Hu, S. Zuo, X. Wang, Curr. Opin. Chem. Eng. 20, 93 (2018)CrossRefGoogle Scholar
  8. 8.
    L. Chmielarz, P. Kustrowski, Z. Piwowarska, B. Dudek, B. Gil, M. Michalik, Appl. Catal. B Environ. 88, 331 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Arellano-Cardenas, T. Gallardo-Velazquez, G. Osorio-Revilla, M.S. Lopez-Cortez, Water Environ. Res. 80, 60 (2008)PubMedCrossRefGoogle Scholar
  10. 10.
    S.A. Garea, A.I. Mihai, A. Ghebaur, C. Nistor, A. Sarbu, Int. J. Pharm. 491, 299 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    R.X. Liu, J.L. Guo, H.X. Tang, J. Colloid Interface Sci. 248, 268 (2002)CrossRefGoogle Scholar
  12. 12.
    J. Xu, Y. Li, Y. Xie, Non-Metal Mines 25, 44 (2006)Google Scholar
  13. 13.
    S. Yamanaka, G.W. Brindley, Clay Clay Miner. 27, 119 (1979)CrossRefGoogle Scholar
  14. 14.
    G.J.J. Bartley, R. Burch, Appl. Catal. 19, 175 (1985)CrossRefGoogle Scholar
  15. 15.
    A. Romero, F. Dorado, I. Asencio, P.B. Garcia, J.L. Valverde, Clay Clay Minerals 54, 737 (2006)CrossRefGoogle Scholar
  16. 16.
    M.E.R. Jalil, R.S. Vieira, D. Azevedo, M. Baschini, K. Sapag, Appl. Clay Sci. 71, 55 (2013)CrossRefGoogle Scholar
  17. 17.
    A.M. Georgescu, F. Nardou, V. Zichil, I.D. Nistor, Appl. Clay Sci. 152, 44 (2018)CrossRefGoogle Scholar
  18. 18.
    K. Reitzel, F. Andersen, S. Egemose, H.S. Jensen, Water Res. 47, 2787 (2013)PubMedCrossRefGoogle Scholar
  19. 19.
    H. Mahadevan, V.V. Dev, K.A. Krishnan, A. Abraham, O.C. Ershana, Environ. Technol. Innov. 9, 1 (2018)CrossRefGoogle Scholar
  20. 20.
    J. Schick, P. Caullet, J.L. Paillaud, J. Patarin, S. Freitag, C.M. Callarec, J. Porous Mater. 19, 405 (2012)CrossRefGoogle Scholar
  21. 21.
    M.E. Bouraie, A.A. Masoud, Appl. Clay Sci. 140, 157 (2017)CrossRefGoogle Scholar
  22. 22.
    D. Hong, Z. Yanling, D. Qianlin, W. Junwen, Z. Kan, D. Guangyue, X. Xianmei, D. Chuanmin, J. Rare Earths 35, 984 (2017)CrossRefGoogle Scholar
  23. 23.
    K.A. Krishnan, A. Haridas, J. Hazard. Mater. 152, 527 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    X. Du, Q. Han, J. Li, H. Li, J. Taiwan Inst. Chem. Eng. 76, 167 (2017)CrossRefGoogle Scholar
  25. 25.
    D.M. Manohar, B.F. Noeline, T.S. Anirudhan, Appl. Clay Sci. 31, 194 (2006)CrossRefGoogle Scholar
  26. 26.
    R. James, G.A. Parks, in Surface and Colloid Science, ed. by D.T. Matpec (Lenum Press, New York, 1982)Google Scholar
  27. 27.
    APHA, Standard Methods for the Examination of Water and Wastewater, 20th edition, APHA, AWWA, WEF, Washington, DC, USA (1998)Google Scholar
  28. 28.
    J.-Q. Jiang, C. Cooper, S. Ouki, Chemosphere 47, 711 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    F.G. Alabarse, R.V. Conceicao, N.M. Balzaretti, F. Schenato, A.M. Xavier, Appl. Clay Sci. 51, 202 (2011)CrossRefGoogle Scholar
  30. 30.
    J.G. Smith, Geogr. Ann. A. 85, 1 (2003)CrossRefGoogle Scholar
  31. 31.
    W.E. Dean, J. Sediment. Petrol. 44, 242 (1974)Google Scholar
  32. 32.
    B.G. Mishra, G.R. Rao, J. Porous Mat. 12, 171 (2005)CrossRefGoogle Scholar
  33. 33.
    F. Kooli, Y. Liu, K. Hbaieb, R. Al-Faze, Micropor. Mesopor. Mat. 226, 482 (2016)CrossRefGoogle Scholar
  34. 34.
    K. Ohtsuka, Y. Hayashi, M. Suda, Chem. Mater. 5, 1823 (1993)CrossRefGoogle Scholar
  35. 35.
    L. Zhironga, Md Azhar Uddinb, S. Zhanxue, Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 1013 (2011)CrossRefGoogle Scholar
  36. 36.
    J. Baloyi, T. Ntho, J. Moma, J. Porous Mater. 26, 583 (2019)CrossRefGoogle Scholar
  37. 37.
    P.S. Kumar, T. Prot, L. Korving, K.J. Keesman, I. Dugulan, M.C.M. van Loosdrecht, G.J. Witkamp, Chem. Eng. J. 326, 231 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Mnasri, N. Hamdi, N.F. Srasra, E. Srasra, Arab. J. Chem. 10, 1175 (2017)CrossRefGoogle Scholar
  39. 39.
    T.S. Anirudhan, C.D. Bringle, S. Rijith, J. Environ. Radioact. 101, 267 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    E. Srasa, F. Bergaya, J.J. Fripia, Clay. Clay Miner. 42, 237 (1994)CrossRefGoogle Scholar
  41. 41.
    J.T. Kloprogge, Dev. Clay Sci. 8, 411 (2017)CrossRefGoogle Scholar
  42. 42.
    F. Tomul, Appl. Surf. Sci. 258, 1836 (2011)CrossRefGoogle Scholar
  43. 43.
    G.M. do Nascimento, V.R.L. Constantino, R. Landers, M.L.A. Temperini, Polymer 47, 6131 (2006)CrossRefGoogle Scholar
  44. 44.
    A. Wang, J.J. Freeman, B.L. Jolliff, J. Raman Spectrosc. 46, 829 (2015)CrossRefGoogle Scholar
  45. 45.
    L. Bergaoui, A. Ghorbel, J.F. Lambert, Stud. Surf. Sci. Catal. 142, 903 (2002)CrossRefGoogle Scholar
  46. 46.
    W. Huang, J. Chen, F. He, J. Tang, D. Li, Y. Zhu, Y. Zhang, Appl. Clay Sci. 104, 252 (2015)CrossRefGoogle Scholar
  47. 47.
    N.S. Al-Zubaidi, A.A. Alwasiti, D. Mahmood, Egypt. J. Pet. 26, 811 (2017)CrossRefGoogle Scholar
  48. 48.
    L. Borgnino, M.J. Avena, C.P. De Pauli, Colloids Surf. A. Physicochem. Eng. Asp. 341, 46 (2009)CrossRefGoogle Scholar
  49. 49.
    J. Lin, H. Wang, Y. Zhan, Z. Zhang, Environ. Earth Sci. 75, 942 (2016)CrossRefGoogle Scholar
  50. 50.
    J. Lu, H. Liu, R. Liu, X. Zhao, L. Sun, J. Qu, Powder Technol. 233, 146 (2013)CrossRefGoogle Scholar
  51. 51.
    X. Liu, L. Zhang, Powder Technol. 277, 112 (2015)CrossRefGoogle Scholar
  52. 52.
    S. Lagergren, Kungliga Svenska Vetenskapsakademiens Handlingar 24, 1 (1898)Google Scholar
  53. 53.
    Y.S. Ho, G. McKay, D.A.G. Wase, C.F. Forster, Adsorpt. Sci. Technol. 18, 639 (2000)CrossRefGoogle Scholar
  54. 54.
    Y. Gao, N. Chen, W. Hu, C. Feng, B. Zhang, Q. Ning, B. Xu, J. Solution Chem. 42, 691 (2013)CrossRefGoogle Scholar
  55. 55.
    J. Zhang, Z. Shen, W. Shan, Z. Chen, Z. Mei, Y. Lei, W. Wang, J. Environ. Sci. 22, 507 (2010)CrossRefGoogle Scholar
  56. 56.
    I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)CrossRefGoogle Scholar
  57. 57.
    H.M.F. Freundlich, J. Phys. Chem. 57, 385 (1906)Google Scholar
  58. 58.
    R.R. Pawar, P. Gupta, Lalhmunsiama, H.C. Bajaj, S.-M. Lee, Sci. Total Environ. 572, 1222 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    M. Tanyol, V. Yonten, V. Demir, Water Air Soil Pollut. 226, 269 (2015)CrossRefGoogle Scholar
  60. 60.
    Q. Liu, P. Hu, J. Wang, L. Zhang, R. Huang, J. Taiwan Inst. Chem. Eng. 59, 311 (2016)CrossRefGoogle Scholar
  61. 61.
    S. Tian, P. Jiang, P. Ning, Y. Su, Chem. Eng. J. 151, 141 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Hydrological Processes GroupNational Centre for Earth Science Studies (NCESS)Akkulam, TrivandrumIndia
  2. 2.Department of ChemistryMar Ivanios CollegeNalanchira, TrivandrumIndia
  3. 3.Research ScholarUniversity of KeralaTrivandrumIndia

Personalised recommendations