Advertisement

Research on Chemical Intermediates

, Volume 46, Issue 1, pp 609–620 | Cite as

Synthesis of 5-ethoxymethylfurfural from saccharides using combined metal–surfactant catalyst in ethanol/dimethyl sulfoxide

  • Yoshikazu Mori
  • Yoshihiro Katayama
  • Toshiyuki Shikata
  • Natsuki KasuyaEmail author
Article
  • 51 Downloads

Abstract

The synthesis of 5-ethoxymethylfurfural (EMF) from glucose using metal chlorides or combined metal–surfactant catalysts as Lewis acids in a solution of ethanol/dimethyl sulfoxide was investigated. Metal chlorides such as aluminum chloride and chromium(III) chloride mainly produced 5-hydroxymethylfurfural and ethyl glucoside in reactions at 140 °C for 180 min. However, the combined metal–surfactant catalysts aluminum tridodecyl sulfate (Al(DS)3) and chromium(III) tridodecyl sulfate efficiently improved the yield of EMF from glucose. The maximum yield of EMF using Al(DS)3 was 37.9% at 160 °C for 60 min. Moreover, the EMF yields from other saccharides (fructose, mannose, sucrose, cellobiose, and inulin) in the presence of Al(DS)3 as a catalyst ranged from 31.2 to 59.3%.

Keywords

Combined metal–surfactant catalysts Dimethyl sulfoxide 5-Ethoxymethylfurfural Glucose 5-Hydroxymethylfurfural Lewis acid 

Notes

Acknowledgements

The authors thank Professor Izumi Watanabe at Tokyo University of Agriculture and Technology for the determination of metal contents using ICP-AES. The authors also thank the staff of the center for the elemental analyses of organic compounds at Kyushu University and Enago (www.enago.jp) for some of the elemental analyses and for the English language review, respectively.

References

  1. 1.
    R.A. Sheldon, Green Chem. 16, 950 (2014)Google Scholar
  2. 2.
    A. Corma, S. Iborra, A. Velty, Chem. Rev. 107, 2411 (2007)PubMedGoogle Scholar
  3. 3.
    A.S. Amarasekara, L.D. Williams, C.C. Ebede, Carbohydr. Res. 343, 3021 (2008)PubMedPubMedCentralGoogle Scholar
  4. 4.
    J.A. Moore, J.E. Kelly, Macromolecules 11, 568 (1978)Google Scholar
  5. 5.
    A. Gandini, A.J.D. Silvestre, C.P. Neto, A.F. Sousa, M. Gomes, J. Polym. Sci. Polym. Chem. 47, 295 (2009)Google Scholar
  6. 6.
    S. Gharbi, A. Gandini, Acta Polym. 50, 293 (1999)Google Scholar
  7. 7.
    S. Boufi, A. Gandini, M.N. Belgacem, Polymer 36, 1689 (1995)Google Scholar
  8. 8.
    N. Yoshida, N. Kasuya, N. Haga, K. Fukuda, Polym. J. 40, 1164 (2008)Google Scholar
  9. 9.
    Y. Román-Leshkov, J.N. Chheda, J.A. Dumesic, Science 312, 1933 (2006)PubMedGoogle Scholar
  10. 10.
    B.R. Caes, R.E. Teixeira, K.G. Knapp, R.T. Raines, ACS Sustain. Chem. Eng. 3, 2591 (2015)Google Scholar
  11. 11.
    G.J.M. Gruter, L.E. Manzer, U.S. 20100058650 (2010)Google Scholar
  12. 12.
    M. Mascal, B.E. Nikitin, Angew. Chem. 120, 8042 (2008)Google Scholar
  13. 13.
    S. Alipour, H. Omidvarborna, D.-S. Kim, Renew. Sust. Energy Rev. 71, 908 (2019)Google Scholar
  14. 14.
    P. Lanzafame, D.M. Temi, S. Perathoner, G. Centi, A. Macario, A. Aloise, G. Giordano, Catal. Today 175, 435 (2011)Google Scholar
  15. 15.
    M. Balakrishnan, R.E. Saciaa, T.A. Bell, Green Chem. 14, 1626 (2012)Google Scholar
  16. 16.
    F. Thomas, D. Stephen, J.J. Leahy, Energy Fuels 29, 7554 (2015)Google Scholar
  17. 17.
    J. Liu, Y. Tang, X. Fua, Starch/Stärke 67, 765 (2015)Google Scholar
  18. 18.
    P.A. Russo, M.M. Antunes, P. Neves, P.V. Wiper, E. Fazio, F. Neri, F. Barreca, L. Mafra, M. Pillinger, N. Pinna, A.A. Valente, J. Mater. Chem. A 2, 11813 (2014)Google Scholar
  19. 19.
    P. Maneechakr, S. Karnjanakom, Res. Chem. Int. 45, 743 (2019)Google Scholar
  20. 20.
    T. Chen, L. Peng, X. Yu, L. He, Fuel 219, 344 (2018)Google Scholar
  21. 21.
    M. Zuo, K. Le, Y. Feng, C. Xiong, Z. Li, X. Zeng, X. Tang, Y. Sun, L. Lin, Ind. Crop Prod. 112, 18 (2018)Google Scholar
  22. 22.
    B. Li, Z. Zhang, K. Huang, Z. Fang, Fuel 113, 625 (2013)Google Scholar
  23. 23.
    J. Liu, Y. Tang, K. Wu, C. Bi, Q. Cui, Carbohydr. Res. 350, 20 (2012)PubMedGoogle Scholar
  24. 24.
    Y. Yang, C. Hu, M.M. Abu-Omar, Biores. Technol. 116, 190 (2012)Google Scholar
  25. 25.
    X. Yu, X. Gao, R. Tao, L. Peng, Catalysts 7, 182 (2017)Google Scholar
  26. 26.
    Y. Yang, M.M. Abu-Omar, C. Hu, Appl. Energy 99, 80 (2012)Google Scholar
  27. 27.
    H. Wang, T. Deng, Y. Wang, Y. Qi, X. Hou, Y. Zhu, Biores. Technol. 136, 394 (2013)Google Scholar
  28. 28.
    H. Li, S. Saravanamurugan, S. Yang, A. Riisager, Green Chem. 18, 726 (2016)Google Scholar
  29. 29.
    S. Kobayashi, T. Wakabayashi, S. Nagayama, H. Oyamada, Tetrahedron Lett. 38, 4559 (1997)Google Scholar
  30. 30.
    S. Kobayashi, K. Manabe, Acc. Chem. Res. 35, 209 (2002)PubMedPubMedCentralGoogle Scholar
  31. 31.
    G.F. Ghesti, J.L.D. Macedo, V. Cavalcanti, I. Parente, J.A. Dias, S.C.L. Dias, Appl. Catal. A Gen. 355, 139 (2009)Google Scholar
  32. 32.
    Y. Qiu, H. Sun, Z. Ma, W. Xia, J. Mol. Catal. A Chem. 392, 76 (2014)Google Scholar
  33. 33.
    S. Zhao, M. Cheng, J. Li, J. Tian, X. Wang, Chem. Commun. 47, 2176 (2011)Google Scholar
  34. 34.
    H. Hota, Y. Mori, N. Kasuya, BioResources 13, 2775 (2018)Google Scholar
  35. 35.
    H. Firouzabadi, N. Iranpoor, F. Nowrouzi, Chem. Commun. 5, 789 (2005)Google Scholar
  36. 36.
    K. Deleersnyder, D. Shi, K. Binnemans, T.N. Parac-Vogt, J. Alloys Compd. 451, 418 (2008)Google Scholar
  37. 37.
    C.B. Rasrendra, S. Adisasmito, I.G.B.N. Makertihartha, H.J. Heeres, Top. Catal. 53, 1241 (2010)Google Scholar
  38. 38.
    W. Lu, G. Lin, H. Yu, A. Tong, J. Xu, J. Mol. Catal. B Enzym. 44, 72 (2007)Google Scholar
  39. 39.
    C. Li, H. Dong, C. Cui, Molecules 20, 2034 (2015)PubMedPubMedCentralGoogle Scholar
  40. 40.
    I. Delidovich, R. Palkovits, Chemsuschem 9, 547 (2016)PubMedPubMedCentralGoogle Scholar
  41. 41.
    J. Tang, X. Guo, L. Zhu, C. Hu, ACS Catal. 5, 5097 (2015)Google Scholar
  42. 42.
    G. Morales, M. Paniagua, J.A. Melero, J. Iglesias, Catal. Today 279, 305 (2016)Google Scholar
  43. 43.
    X. Yu, X. Gao, L. Peng, L. He, J. Zhang, ChemistrySelect 3, 13391 (2018)Google Scholar
  44. 44.
    S. De, S. Dutta, B. Saha, Green Chem. 13, 2859 (2011)Google Scholar
  45. 45.
    Y. Yang, C. Hu, M.M. Abu-Omar, Green Chem. 14, 509 (2012)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.United Graduate School of Agricultural ScienceTokyo University of Agriculture and TechnologyFuchuJapan
  2. 2.College of Bioresource SciencesNihon UniversityFujisawaJapan
  3. 3.Institute of AgricultureTokyo University of Agriculture and TechnologyFuchuJapan

Personalised recommendations