Advertisement

Ternary system from mesoporous CdS–ZnS modified with polyaniline for removal of cationic and anionic dyes

  • Heba AliEmail author
Article
  • 6 Downloads

Abstract

In this work, mesoporous CdS (130.7 m2/g) was prepared; then, ZnS was deposited by chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) method, to get CdS–ZnS(C) and CdS–ZnS(S), respectively. Subsequently, the highest efficient binary hybrid was sensitized with polyaniline to produce CdS–ZnS–PANI for the first time. XRD and EDX analyses confirmed the coating of CdS with ZnS using CBD and SILAR method. The careful examination for the surface morphology of the binary hybrids illustrated that CdS–ZnS(S) has uniform morphology and the CdS nanoparticles are homogeneously overcoated with ZnS. In contrast, CdS–ZnS(C) exhibits inhomogeneous surface, where there are ZnS particles that aggregate together and there is another region which contains ZnS deposited onto CdS. The estimated band gap of CdS, CdS–ZnS(S), and CdS–ZnS–PANI was 2.36 eV, 2.44 eV, and 1.9 eV, respectively. The removal efficiency for cationic and anionic dyes single and/or in combination using CdS, ZnS, CdS–ZnS(C), CdS–ZnS(S), PANI, and CdS–ZnS–PANI was studied. The effect of the amount of ZnS loaded by SILAR process on the activity of the CdS–ZnS(S) was presented. The results proposed that CdS–ZnS(S) exhibits selective adsorption and high removal efficiency for cationic dye compared to CdS–ZnS(C) due to higher negative zeta potential and large surface area. The CdS–ZnS–PANI ternary nanocomposite showed uptake efficiency of 96.7% for cationic dye (MB) and 94.3% for anionic dye (MO) in a mixed dye solution after 10 min. Finally, the possible adsorption mechanism was proposed.

Graphic abstract

Keywords

CdS ZnS Polyaniline Mesoporous Adsorption Organic dyes 

Notes

Acknowledgement

This work was supported by the National Research Centre (No. AR110908). The author thanks Prof. Zahra Saleh, Central Laboratories Network and The Centers of Excellence, NRC, for providing instrumental facility.

References

  1. 1.
    T. Hu, Z. Li, L. Lu, K. Dai, J. Zhang, R. Li, C. Liang, J. Colloid Interface Sci. 555, 166 (2019)CrossRefGoogle Scholar
  2. 2.
    T. Hu, K. Dai, J. Zhang, G. Zhu, C. Liang, Appl. Surf. Sci. 481, 1385 (2019)CrossRefGoogle Scholar
  3. 3.
    X. Ke, K. Dai, G. Zhu, J. Zhang, C. Liang, Appl. Surf. Sci. 481, 669 (2019)CrossRefGoogle Scholar
  4. 4.
    K. Dai, J. Lv, J. Zhang, G. Zhu, L. Geng, C. Liang, ACS Sustain. Chem. Eng. 6, 12817 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. Huo, J. Zhang, K. Dai, Q. Li, J. Lv, G. Zhu, C. Liang, Appl. Catal. B Environ. 241, 528 (2019)CrossRefGoogle Scholar
  6. 6.
    F. Mei, K. Dai, J. Zhang, W. Li, C. Liang, Appl. Surf. Sci. 488, 151 (2019)CrossRefGoogle Scholar
  7. 7.
    Z. Li, X. Wang, J. Zhang, C. Liang, L. Lu, K. Dai, Chin. J. Catal. 40, 326 (2019)CrossRefGoogle Scholar
  8. 8.
    Y. Huo, Z. Wang, J. Zhang, C. Liang, K. Dai, Appl. Surf. Sci. 459, 271 (2018)CrossRefGoogle Scholar
  9. 9.
    Y. Huo, Y. Yang, K. Dai, J. Zhang, Appl. Surf. Sci. 481, 1260 (2019)CrossRefGoogle Scholar
  10. 10.
    Y. Cheng, L. An, F. Gao, G. Wang, X. Li, X. Chen, Res. Chem. Intermed. 39, 3969 (2013)CrossRefGoogle Scholar
  11. 11.
    A. Ahmad, S.H. Mohd-Setapar, S.C. Chuo, A. Khatoon, W.A. Wani, R. Kumar, M. Rafatullah, RSC Adv. 5, 30801 (2015)CrossRefGoogle Scholar
  12. 12.
    M. Liu, X. Li, Y. Du, R. Han, Bioresour. Technol. Rep. 5, 238 (2019)CrossRefGoogle Scholar
  13. 13.
    X. Chen, F. Zhang, Q. Wang, X. Han, X. Li, J. Liu, H. Lin, F. Qu, Dalton Trans. 44, 3034 (2015)CrossRefGoogle Scholar
  14. 14.
    J.Y. Luo, Y.R. Lin, B.W. Liang, Y.D. Li, X.W. Mo, Q.G. Zeng, RSC Adv. 5, 100898 (2015)CrossRefGoogle Scholar
  15. 15.
    H. Han, H. Lu, X. Jiang, F. Zhong, X. Ai, H. Yang, Y. Cao, Electrochim. Acta 301, 352 (2019)CrossRefGoogle Scholar
  16. 16.
    S. Manjunatha, T. Machappa, Y.T. Ravikiran, B. Chethan, A. Sunilkumar, Phys. B Condens. Matter. 561, 170 (2019)CrossRefGoogle Scholar
  17. 17.
    K. Pandiselvi, S. Thambidurai, Colloids Surf. B Biointerfaces 108, 229 (2013)CrossRefGoogle Scholar
  18. 18.
    A. Olad, R. Nabavi, J. Hazard. Mater. 147, 845 (2007)CrossRefGoogle Scholar
  19. 19.
    L. Kumar, I. Rawal, A. Kaur, S. Annapoorn, Sens. Actuators, B 240, 408 (2017)CrossRefGoogle Scholar
  20. 20.
    B.H. Patil, K. Jang, S. Lee, J.H. Kim, C.S. Yoon, J. Kim, D.H. Kim, H. Ahn, J. Alloys Compd. 694, 111 (2017)CrossRefGoogle Scholar
  21. 21.
    C. Zhou, M. Hong, Y. Yang, N. Hu, Z. Zhou, L. Zhang, Y. Zhang, Appl. Surf. Sci. 484, 663 (2019)CrossRefGoogle Scholar
  22. 22.
    D. Mahanta, G. Madras, S. Radhakrishnan, S. Patil, J. Phys. Chem. B 113, 2293 (2009)CrossRefGoogle Scholar
  23. 23.
    R. Kumar, M.O. Ansari, A.M. Barakat, Ind. Eng. Chem. Res. 53, 7167 (2014)CrossRefGoogle Scholar
  24. 24.
    W. Yao, C. Shen, Y. Lu, Compos. Sci. Technol. 87, 8 (2013)CrossRefGoogle Scholar
  25. 25.
    P. Xiong, Q. Chen, M. He, X. Sun, X. Wang, J. Mater. Chem. 22, 17485 (2012)CrossRefGoogle Scholar
  26. 26.
    C.V. Reddy, J. Shim, M. Cho, J. Phys. Chem. Solids 103, 209 (2017)CrossRefGoogle Scholar
  27. 27.
    O. Amiri, S.M.H. Mashkani, M.M. Rad, F. Abdvali, Superlattices Microstruct. 66, 67 (2014)CrossRefGoogle Scholar
  28. 28.
    M. Koneswaran, R. Narayanaswamy, Sens. Actuators, B 210, 811 (2015)CrossRefGoogle Scholar
  29. 29.
    J. Su, T. Zhang, L. Wang, J. Shi, Y. Chen, Chin. J. Catal. 38, 489 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Lu, Y. Song, F. Wang, Mater. Chem. Phys. 138, 238 (2013)CrossRefGoogle Scholar
  31. 31.
    M.J. Chatterjee, A. Ghosh, A. Mondal, D. Banerjee, RSC Adv. 7, 36403 (2017)CrossRefGoogle Scholar
  32. 32.
    H. Zeghioud, S. Lamouri, Z. Safidine, M. Belbachir, J. Serb. Chem. Soc. 80, 917 (2015)CrossRefGoogle Scholar
  33. 33.
    H. Ali, N. Ismail, M.S. Amin, M. Mekewi, Front. Energy 12, 249 (2018)CrossRefGoogle Scholar
  34. 34.
    A.T. Kuvarega, R.W.M. Krause, B.B. Mamba, J. Nanoparticle Res. 14, 776 (2012)CrossRefGoogle Scholar
  35. 35.
    H. Cui, B. Li, Z. Li, X. Li, S. Xu, Appl. Surf. Sci. 455, 831 (2018)CrossRefGoogle Scholar
  36. 36.
    A.H. Qusti, A.Y.S. Malkhasian, M. Abdel Salam, J. Mol. Liq. 255, 364 (2018)CrossRefGoogle Scholar
  37. 37.
    Y. Chen, B. Zhai, Y. Liang, Y. Li, J. Li, J. Solid State Chem. 274, 32 (2019)CrossRefGoogle Scholar
  38. 38.
    B.N. Patra, D. Majhi, J. Phys. Chem. B 119, 8154 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Physical Chemistry DepartmentNational Research CentreGizaEgypt

Personalised recommendations