A novel chemosensor for Fe3+ based on open–closed-loop mechanism and imaging in living cells

  • Quan Zhou
  • Le Qian
  • Qianqian Pan
  • Guanqing Si
  • Zhaopeng Qi
  • Yuchuan ZhengEmail author
  • Changjiang LiEmail author


In this paper, a novel chemosensor (named L1) for Fe3+ based on the rhodamine 6G and o-vanillin has been synthesized, which can selectively recognize Fe3+. The L1 solution showed a distinguishable colour change by naked eye, and the fluorescence turns on response after the addition of Fe3+. In addition, the experimental results showed that the spirocyclic of L1 was opened by cooperation between L1 and Fe3+, and then the fluorescence emission after excitation of the mixture solution was detected with the change in solution colour. The complexation coefficient of L1 towards Fe3+ was 1:1. Furthermore, L1 for Fe3+ sensing had a remarkable low detection limit of 427 nM (UV) and 130 nM (fluorescence), which is far below the drinking water standards (0.3 mg/L) of China. Meanwhile, the in vivo imaging and cell viability assay experiments demonstrated that L1 could be used for sensing Fe3+ in vivo.


Rhodamine 6G O-Vanillin Chemosensor Fluorescence Cell viability 



This work was supported by key projects of Anhui Province University outstanding youth talent support program (gxyqZD2018078); Key Provincial Teaching and Research Projects in Anhui Province (2017jyxm0444); Innovation and Entrepreneurship Training Program for College Students (S201910375032).

Supplementary material

11164_2019_3965_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1201 kb)


  1. 1.
    B. Niu, K. Xiao, X. Huang et al., ACS Appl. Mater. Interfaces 10, 22632 (2018)CrossRefGoogle Scholar
  2. 2.
    Y. Wang, H.Q. Chang et al., Sens. Actuators B Chem. 239, 60 (2017)CrossRefGoogle Scholar
  3. 3.
    G. Zhang, B. Lu, Y. Wen et al., Sens. Actuators B Chem. 8, 786 (2012)CrossRefGoogle Scholar
  4. 4.
    C.T. Sempos, R.F. Gillum, A.C. Looker. Iron and Heart Disease. Preventive Nutrition (2005)Google Scholar
  5. 5.
    S. Swaminathan, V.A. Fonseca, M.G. Alam et al., Diabetes Care 30, 1926 (2007)CrossRefGoogle Scholar
  6. 6.
    J.W. Eschch, J.W. Adaon, Kidney Int. 55, S35 (1999)CrossRefGoogle Scholar
  7. 7.
    M.E. Conrad, J.N. Umbreit, Am. J. Hematol. 64, 287 (2000)CrossRefGoogle Scholar
  8. 8.
    M.E. Conrad, J.N. Umbreit, Am. J. Med. Sci. 318, 213 (1999)CrossRefGoogle Scholar
  9. 9.
    S.W. Thomas, G.D. Joly, T.M. Swager, Chem. Rev. 107, 1339 (2007)CrossRefGoogle Scholar
  10. 10.
    Z.D. Tian, Y.C. Liu, B.Z. Tian, J.L. Zhang, Res. Chem. Intermed. 41, 525 (2015)CrossRefGoogle Scholar
  11. 11.
    D. Şahin, H. Yılmaz, Z. Hayvalı, Res. Chem. Intermed. 42, 6337 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Wang, J. Li, D. Yao et al., Res. Chem. Intermed. 39, 2723 (2013)CrossRefGoogle Scholar
  13. 13.
    C. Wan, H. Li, J. Wang et al., Res. Chem. Intermed. 45, 1815 (2019)CrossRefGoogle Scholar
  14. 14.
    C.J. Li, K.Q. Xiang, Y.C. Liu et al., Res. Chem. Intermed. 41, 10169 (2015)CrossRefGoogle Scholar
  15. 15.
    R. Qiao, W.Z. Xiong, C.B. Bai et al., Supramol. Chem. 30, 911 (2018)CrossRefGoogle Scholar
  16. 16.
    T. Zhou, X.X. Chen, Q.H. Hua et al., Sens. Actuators B Chem. 253, 292 (2017)CrossRefGoogle Scholar
  17. 17.
    H. Kim, S. Wang, S.H. Kim et al., Mol. Cryst. Liq. Cryst. 566, 45 (2012)CrossRefGoogle Scholar
  18. 18.
    J.H. Chu, X.H. Xu, S.M. Kang, N. Liu, Z.Q. Wu, J. Am. Chem. Soc. 140, 17773 (2018)CrossRefGoogle Scholar
  19. 19.
    Z.Q. Jiang, S.Q. Zhao, Y.X. Su, N. Liu, Z.Q. Wu, Macromolecules 51, 737 (2018)CrossRefGoogle Scholar
  20. 20.
    M. Su, N. Liu, Q. Wang, H.Q. Wang, J. Yin, Z.Q. Wu, Macromolecules 49, 110 (2016)CrossRefGoogle Scholar
  21. 21.
    Z.Q. Hu, Y.Y. Gu, W.Z. Hu et al., Chemistryopen 3, 264 (2014)CrossRefGoogle Scholar
  22. 22.
    X.M. Li, R.R. Zhao, Y. Yang et al., Chin. Chem. Lett. 28, 1258 (2017)CrossRefGoogle Scholar
  23. 23.
    G.F. Chen, H.M. Jia, L.Y. Zhang et al., Res. Chem. Intermed. 39, 4081 (2013)CrossRefGoogle Scholar
  24. 24.
    L. Huang, F.P. Hou, J. Cheng et al., Org. Biomol. Chem. 10, 9634 (2012)CrossRefGoogle Scholar
  25. 25.
    C. Kar, M.D. Adhikari, A. Ramesh, G. Das, Inorg. Chem. 52, 743 (2013)CrossRefGoogle Scholar
  26. 26.
    Department of Water Resources Management, Quality Standard for Ground Water of the National Standards of the People’s Republic of China, GB 5749-2006, Department of Water Resources Management, China, (2007)Google Scholar
  27. 27.
    Y. Gao, J. Wang, M. Fu, H.W. Chen, M.Z. Fang, J. Org. Chem. 37, 617 (2017)Google Scholar
  28. 28.
    H.Y. Jo, G.J. Park, Y.J. Na, Y.W. Choi, G.R. You, C. Kim, Dyes Pigments 109, 127 (2014)CrossRefGoogle Scholar
  29. 29.
    Z.P. Yu, C.H. Ma, Q. Wang, N. Liu, J. Yin, Z.Q. Wu, Macromolecules 49, 1180 (2016)CrossRefGoogle Scholar
  30. 30.
    S.Q. Zhao, G.J. Hu, X.H. Xu, S.M. Kang, N. Liu, Z.Q. Wu, ACS Macro Lett. 7, 1073 (2018)CrossRefGoogle Scholar
  31. 31.
    F. Zhou, T.H. Leng, Y.J. Liu et al., Dyes Pigments 142, 429 (2017)CrossRefGoogle Scholar
  32. 32.
    Q. Wang, L.P. Huang, X. Quan, Q.L. Zhao, J. Photochem. Photobiol. A 357, 156 (2018)CrossRefGoogle Scholar
  33. 33.
    L. Zhang, J.Y. Wang, J.L. Fan et al., Bioorg. Med. Chem. Lett. 21, 5413 (2011)CrossRefGoogle Scholar
  34. 34.
    W. Wang, J. Wu, Q. Liu et al., Tetrahedron Lett. 59, 1860 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistryHuangshan UniversityHuangshanChina
  2. 2.Key Laboratory of Inorgnic Functional MaterialHuangshan UniversityHuangshanChina

Personalised recommendations