Advertisement

In situ DRIFTS investigation on CeO2/TiO2–ZrO2–SO 4 2− catalyst for NH3–SCR: the influence of surface acidity and reducibility

  • Qiulin Zhang
  • Lanying Wang
  • Ping NingEmail author
  • Zhongxian Song
  • Jie Fan
  • Huimin Wang
  • Tong Tang
  • Jia Hu
Article

Abstract

A series of CeO2-modified TiO2–ZrO2–SO 4 2− catalysts were employed to the selective catalytic reduction (SCR) of NOx by NH3. The obtained results indicated that the interaction between CeO2 and TiO2–ZrO2–SO 4 2− contributed to the increased reducibility and decreased surface acidity with the augment of CeO2. The in situ DRIFTS results suggested that suitable surface acidity and reducibility could be offered by increasing the ceria loadings from 24 to 40 wt%. The amount of adsorbed NH3 species, amide species (–NH2) and activated nitrate was increased with the augment of ceria. Excessive addition of CeO2 (80 wt%) resulted in the lacking of surface acid sites and induced the inert nitrate species generation on the catalysts surface.

Keywords

NOx NH3–SCR CeO2 TiO2–ZrO2–SO42− Surface acidity DRIFTS 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21666014).

Supplementary material

11164_2019_3961_MOESM1_ESM.docx (3.6 mb)
Supplementary material 1 (DOCX 3693 kb)

References

  1. 1.
    Y. Zhao, L. Duan, T. Larssen, L.H. Hu, J.M. Hao, Environ. Sci. Technol. 41, 1815 (2007)CrossRefGoogle Scholar
  2. 2.
    S.P. Luo, W.T. Zhou, A.J. Xie, F.Q. Wu, C. Yao, X.Z. Li, S.X. Zuo, T.H. Liu, Chem. Eng. J. 286, 291 (2016)CrossRefGoogle Scholar
  3. 3.
    L.L. Li, L. Zhang, K.L. Ma, W.X. Zou, Y. Cao, Y. Xiong, C.J. Tang, L. Dong, Appl. Catal. B 207, 366 (2017)CrossRefGoogle Scholar
  4. 4.
    F. Nakajima, I. Hamada, Catal. Today 29, 109 (1996)CrossRefGoogle Scholar
  5. 5.
    Y. Jiang, X. Gao, Y.X. Zhang, W.H. Wu, H. Song, Z.Y. Luo, K.F. Cen, J. Hazard. Mater. 274, 270 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Djerad, M. Crocoll, S. Kureti, L. Tifouti, W. Weisweiler, Catal. Today 113, 208 (2006)CrossRefGoogle Scholar
  7. 7.
    M. Yates, J.A. Martín, M.Á. Martín-Luengo, S. Suárez, J. Blanco, Catal. Today 107–108, 120 (2005)CrossRefGoogle Scholar
  8. 8.
    M.V. Ganduglia-Pirovano, A. Hofmann, J. Sauer, Surf. Sci. Rep. 62, 219 (2007)CrossRefGoogle Scholar
  9. 9.
    X. Gao, Y. Jiang, Y. Zhong, Z.Y. Luo, K.F. Cen, J. Hazard. Mater. 174, 734 (2010)CrossRefGoogle Scholar
  10. 10.
    J.X. Zhang, S.L. Zhang, W. Cai, Q. Zhong, Appl. Surf. Sci. 268, 535 (2013)CrossRefGoogle Scholar
  11. 11.
    L. Chen, J.H. Li, M.F. Ge, J. Phys. Chem. C 113, 21177 (2009)CrossRefGoogle Scholar
  12. 12.
    H.Z. Chang, L. Ma, S.J. Yang, J.H. Li, L. Chen, W. Wang, J.M. Hao, J. Hazard. Mater. 262, 782 (2013)CrossRefGoogle Scholar
  13. 13.
    L. Zhang, J. Pierce, V.L. Leung, D. Wang, W.S. Epling, J. Phys. Chem. C 117, 8282 (2013)CrossRefGoogle Scholar
  14. 14.
    Y.Q. Zeng, Y.N. Wang, S.L. Zhang, Q. Zhong, W.L. Rong, X.H. Li, J. Colloid. Interfaces Sci. 524, 8 (2018)CrossRefGoogle Scholar
  15. 15.
    N.Y. Topsøe, Science 265, 1217 (1994)CrossRefGoogle Scholar
  16. 16.
    J. Yu, Z.C. Si, L. Chen, X.D. Wu, D. Weng, Appl. Catal. B: Environ. 163, 223 (2015)CrossRefGoogle Scholar
  17. 17.
    Y.C. You, C.N. Shi, H.Z. Chang, L. Guo, L.W. Xu, J.H. Li, J. Mol. Catal. 453, 47 (2018)CrossRefGoogle Scholar
  18. 18.
    W.Y. Yao, Y. Liu, X.Q. Wang, X.L. Weng, H.Q. Wang, Z.B. Wu, J. Phys. Chem. C 120, 221 (2016)CrossRefGoogle Scholar
  19. 19.
    T. Yi, Y.B. Zhang, J.W. Li, X.G. Yang, Chin. J. Catal. 37, 300 (2016)CrossRefGoogle Scholar
  20. 20.
    Q.L. Zhang, J.H. Zhang, Z.X. Song, P. Ning, H. Li, X. Liu, J. Ind. Eng. Chem. 34, 165 (2016)CrossRefGoogle Scholar
  21. 21.
    Y. Peng, K.Z. Li, J.H. Li, Appl. Catal. B: Environ. 140–141, 483 (2013)CrossRefGoogle Scholar
  22. 22.
    Z.C. Si, D. Weng, X.D. Wu, Z.R. Ma, J. Ma, R. Ran, Catal. Today 201, 122 (2013)CrossRefGoogle Scholar
  23. 23.
    Z.C. Si, D. Weng, X.D. Wu, R. Ran, Z.R. Ma, Catal. Commun. 17, 146 (2012)CrossRefGoogle Scholar
  24. 24.
    X.L. Weng, X.X. Dai, Q.S. Zeng, Y. Liu, Z.B. Wu, J. Colloid. Interf. Sci. 461, 9 (2016)CrossRefGoogle Scholar
  25. 25.
    Z.R. Ma, X.D. Wu, H. Härelind, D. Wen, B.D. Wang, Z.C. Si, J. Mol. Catal. A-Chem. 423, 172 (2016)CrossRefGoogle Scholar
  26. 26.
    Z.M. Liu, H. Su, J.H. Li, Y. Li, Catal. Commun. 65, 51 (2015)CrossRefGoogle Scholar
  27. 27.
    Z.X. Song, Q.L. Zhang, Y.X. Ma, Q.X. Liu, P. Ning, X. Liu, J. Wang, B. Zhao, J.H. Huang, Z.Z. Huang, J. Taiwan. Inst. Chem. E. 71, 277 (2017)CrossRefGoogle Scholar
  28. 28.
    Z.X. Song, L.W. Wang, Q.L. Zhang, P. Ning, J. Hu, T. Tang, X. Liu, B. Li, J. Taiwan. Inst. Chem. E 000, 1 (2018)Google Scholar
  29. 29.
    Z.X. Song, Q.L. Zhang, P. Ning, J. Fan, Y.K. Duan, X. Liu, Z.Z. Huang, J. Taiwan. Inst. Chem. E. 65, 149 (2016)CrossRefGoogle Scholar
  30. 30.
    Q.L. Zhang, J. Fan, P. Ning, Z.X. Song, X. Liu, L.Y. Wang, J. Wang, H.M. Wang, K.X. Long, Appl. Surf. Sci. 435, 1037 (2018)CrossRefGoogle Scholar
  31. 31.
    J. Fan, P. Ning, Z.X. Song, X. Liu, L.Y. Wang, J. Wang, H.M. Wang, K.X. Long, Q.L. Zhang, Chem. Eng. J. 334, 855 (2018)CrossRefGoogle Scholar
  32. 32.
    J. Arfaoui, A. Ghorbel, C. Petitto, G. Delahay, Appl. Catal. B: Environ. 224, 264 (2018)CrossRefGoogle Scholar
  33. 33.
    C. Gannoun, R. Delaigle, D.P. Debecker, P. Eloy, A. Ghorbela, E.M. Gaigneaux, Appl. Catal. A-Gen. 447–448, 1 (2012)CrossRefGoogle Scholar
  34. 34.
    C. Gannoun, A. Turki, H. Kochkar, R. Delaigle, P. Eloy, A. Ghorbel, E.M. Gaigneaux, Appl. Catal. B: Environ. 147, 58 (2014)CrossRefGoogle Scholar
  35. 35.
    P.J. Gong, J.L. Xie, D. Fang, X.Q. Liu, F. He, F.X. Li, Chem. Eng. J. 356(598), 598 (2019)CrossRefGoogle Scholar
  36. 36.
    D. Wang, Y. Peng, Q.L. Yang, F.Y. Hu, J.H. Li, J. Crittenden, Catal. Today 332, 42 (2019)CrossRefGoogle Scholar
  37. 37.
    L. Wei, S.P. Cui, H.X. Guo, X.Y. Ma, J. Mol. Catal. A-Chem. 445, 102 (2018)CrossRefGoogle Scholar
  38. 38.
    L. Wei, S.P. Cui, H.X. Guo, L.J. Zhang, Comput. Mater. Sci. 144, 216 (2018)CrossRefGoogle Scholar
  39. 39.
    J.P. Wang, Z. Yan, L.L. Liu, Y. Chen, Z.T. Zhang, X.D. Wang, Appl. Surf. Sci. 313, 660 (2014)CrossRefGoogle Scholar
  40. 40.
    Q. Li, H.C. Gu, P. Li, Y.H. Zhou, Y. Liu, Z.N. Qi, Y. Xin, Z.L. Zhang, Chin. J. Catal. 35, 1289 (2014)CrossRefGoogle Scholar
  41. 41.
    S.X. Wang, R.T. Guo, W.G. Pan, Q.L. Chen, P. Sun, M.Y. Li, S.M. Liu, Catal. Commun. 89, 143 (2017)CrossRefGoogle Scholar
  42. 42.
    J.M.G. Amores, V.S. Escribano, G. Ramis, G. Busca, Appl. Catal. B: Environ. 13, 45 (1997)CrossRefGoogle Scholar
  43. 43.
    S.C. Xiong, Y. Liao, X. Xiao, H. Dang, S.J. Yang, J. Phys. Chem. C 119, 4180 (2015)CrossRefGoogle Scholar
  44. 44.
    D. Wang, L. Zhang, K. Kamasamudram, W.S. Epling, ACS Catal. 3, 871 (2013)CrossRefGoogle Scholar
  45. 45.
    C. Gao, J.W. Shi, Z.Y. Fan, B.R. Wang, Y. Wang, C. He, X.B. Wang, J. Li, C.M. Niu, Appl. Catal. A-Gen. 564, 102 (2018)CrossRefGoogle Scholar
  46. 46.
    G.Y. Zhou, B.C. Zhong, W.H. Wang, X.J. Guan, B.C. Huang, D.Q. Ye, H.J. Wu, Catal. Today 175, 157 (2011)CrossRefGoogle Scholar
  47. 47.
    S.W. Liu, R.T. Guo, X. Sun, J. Liu, W.G. Pan, Z.L. Xin, X. Shi, Z.Y. Wang, X.Y. Liu, H. Qin, J. Energy Inst. 92, 1610 (2018)CrossRefGoogle Scholar
  48. 48.
    X.J. Yao, Z. Wang, S.H. Yu, F.M. Yang, L. Dong, Appl. Catal. A-Gen. 542, 282 (2017)CrossRefGoogle Scholar
  49. 49.
    F.Y. Gao, X.L. Tang, H.H. Yi, S.Z. Zhao, J.G. Wang, T. Gu, Appl. Surf. Sci. 466, 411 (2019)CrossRefGoogle Scholar
  50. 50.
    D. Wang, Y. Peng, S.C. Xiong, B. Li, L.N. Gan, C.M. Lu, J.J. Chen, Y.L. Ma, J.H. Li, Appl. Catal. B 221, 556 (2018)CrossRefGoogle Scholar
  51. 51.
    S.H. Zhan, H. Zhang, Y. Zhang, Q. Shi, Y. Li, X.J. Li, Appl. Catal. B 203, 199 (2017)CrossRefGoogle Scholar
  52. 52.
    C.L. Yu, B.C. Huang, L.F. Dong, F. Chen, X.Q. Liu, Catal. Today 281, 610 (2017)CrossRefGoogle Scholar
  53. 53.
    L. Chen, J.H. Li, M.F. Ge, Environ. Sci. Technol. 44, 9590 (2010)CrossRefGoogle Scholar
  54. 54.
    M.Y. Li, R.T. Guo, C.X. Hu, P. Sun, W.G. Pan, S.M. Liu, X. Sun, S.W. Liuand, J. Liu, Appl. Surf. Sci. 436, 814 (2018)CrossRefGoogle Scholar
  55. 55.
    S.J. Yang, Y. Liao, S.C. Xiong, F.H. Qi, H. Dang, X. Xiao, J.H. Li, J. Phys. Chem. C 118, 21500 (2014)CrossRefGoogle Scholar
  56. 56.
    N.Z. Yang, R.T. Guo, W.G. Pan, Q.L. Chen, Q.S. Wang, C.Z. Lu, S.X. Wang, Appl. Surf. Sci. 378, 513 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Qiulin Zhang
    • 1
  • Lanying Wang
    • 1
  • Ping Ning
    • 1
    Email author
  • Zhongxian Song
    • 2
  • Jie Fan
    • 1
  • Huimin Wang
    • 1
  • Tong Tang
    • 1
  • Jia Hu
    • 1
  1. 1.Faculty of Environmental Science and EngineeringKunming University of Science and TechnologyKunmingPeople’s Republic of China
  2. 2.Henan Province Key Laboratory of Water Pollution Control and Rehabilitation TechnologyHenan University of Urban ConstructionPingdingshanPeople’s Republic of China

Personalised recommendations