Advertisement

MCM-41-supported Fe(Mn)/Cu bimetallic heterogeneous catalysis for enhanced and recyclable photo-Fenton degradation of methylene blue

  • Tao Sun
  • Mingfu Gong
  • Yuanqing Cai
  • Shilin Xiao
  • Liang Zhang
  • Ya Zhang
  • Zhongsheng Xu
  • Dong ZhangEmail author
  • Yun LiuEmail author
  • Chunyu ZhouEmail author
Article
  • 35 Downloads

Abstract

Highly efficient bimetallic heterogeneous photo-Fenton catalysts (Fe2O3/CuO@MCM-41, FCM and MnOx/CuO@MCM-41, MCM) have been successfully prepared via wet impregnation over a mesoporous MCM-41 silica support. FESEM images demonstrate that the metal oxides are highly dispersed on the surface of the MCM-41 matrix consisting of the ordered 2D hexagonal mesostructure. XPS results indicate that the bimetallic oxides species in FCM and MCM are Fe2O3, CuO and MnOx, CuO, respectively. The as-prepared dual-heterojunctions have a significant enhancement of catalytic activities under visible light, compared with the material containing monometal, and prevents the leaching of metal ions species. The degradation efficiencies of MB can be up to 99.65% and 98.22% within 45 min irradiation for FCM1:2 and MCM1:0.5, respectively. And the degradation efficiencies still can reach up to 92% after 10 cycles. Moreover, the synthesized bimetallic dual-heterojunctions catalysts can be employed in very mild condition, and little difference in catalytic effect was observed under different pH value (3.0–9.0). The improved photocatalytic activity can be ascribed to the sufficient interfacial contact between different components for photo energy transfer and e/h+ pairs separation, which greatly enhance cycle reaction of Fe3+/Fe2+ or Mn4+/Mn3+/Mn2+ after introducing CuO. This research provides a new approach for the development of an effective heterogeneous photo-induced Fenton (Fenton like) catalyst with vast potential for organic pollutant removal.

Keywords

Fe2O3 CuO MnOx MCM-41 mesoporous silica Dual-heterojunction Photo-Fenton reaction 

Notes

Acknowledgements

This work was supported by Army Medical University Foundation (2018XLC2020) and Army Medical University Foundation for Introducing Talents (Y.L.).

References

  1. 1.
    Y. Badr, M.G. Abd El-Wahed, M.A. Mahmoud, J. Hazard. Mater. 154, 245 (2008)CrossRefGoogle Scholar
  2. 2.
    Z. Miao, S. Tao, Y. Wang, Y. Yu, C. Meng, Y. An, Microporous Mesoporous Mater. 176, 178 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Karthikeyan, M.P. Pachamuthu, M.A. Isaacs, S. Kumar, A.F. Lee, G. Sekaran, Appl. Catal. B Environ. 199, 323 (2016)CrossRefGoogle Scholar
  4. 4.
    H. Liang, S. Zhou, Y. Chen, F. Zhou, C. Yan, J. Taiwan Inst. Chem. Eng. 49, 105 (2015)CrossRefGoogle Scholar
  5. 5.
    E. Neyens, J. Baeyens, J. Hazard. Mater. 98, 33 (2003)CrossRefGoogle Scholar
  6. 6.
    M. Ren, X. Qian, M. Fang, D. Yue, Y. Zhao, Res. Chem. Intermed. 44, 4103 (2018)CrossRefGoogle Scholar
  7. 7.
    C. Dong, J. Lu, B. Qiu, B. Shen, M. Xing, J. Zhang, Appl. Catal. B Environ. 222, 146 (2018)CrossRefGoogle Scholar
  8. 8.
    C. Gong, J. Jiang, D. Li, Sci. Total Environ. 532, 495 (2015)CrossRefGoogle Scholar
  9. 9.
    J.A. Melero, G. Calleja, F. Martínez, R. Molina, Catal. Commun. 7, 478 (2006)CrossRefGoogle Scholar
  10. 10.
    X. Yan, K. Gan, B. Tian, J. Zhang, L. Wang, D. Lu, Res. Chem. Intermed. 44, 1 (2017)CrossRefGoogle Scholar
  11. 11.
    H. Zhong, L. Duan, P. Ye, X. Li, A. Xu, Q.A. Peng, Res. Chem. Intermed. 45, 907 (2018)CrossRefGoogle Scholar
  12. 12.
    T. Shahwan, S.A. Sirriah, M. Nairat, E. Boyacı, A.E. Eroğlu, T.B. Scott, K.R. Hallam, Chem. Eng. J. 172, 258 (2011)CrossRefGoogle Scholar
  13. 13.
    N. Panda, H. Sahoo, S. Mohapatra, J. Hazard. Mater. 185, 359 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Xiao, Y. Deng, W. Huan, J. Li, J. Zhang, M. Xing, Mater. Today Chem. 11, 86 (2019)CrossRefGoogle Scholar
  15. 15.
    X. Li, Y. Pi, L. Wu, Q. Xia, J. Wu, Z. Li, J. Xiao, Appl. Catal. B Environ. 202, 653 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Deng, M. Xing, J. Zhang, Appl. Catal. B Environ. 211, 157 (2017)CrossRefGoogle Scholar
  17. 17.
    J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenkert, J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  18. 18.
    A. Taguchi, F. Schüth, Microporous Mesoporous Mater. 77, 1 (2005)CrossRefGoogle Scholar
  19. 19.
    Y. Wang, J. Ren, X. Liu, Y. Wang, Y. Guo, Y. Guo, G. Lu, J. Colloid Interface Sci. 326, 158 (2008)CrossRefGoogle Scholar
  20. 20.
    V. Meynen, P. Cool, E.F. Vansant, Microporous Mesoporous Mater. 125, 170 (2009)CrossRefGoogle Scholar
  21. 21.
    R.S. Araújo, D.C.S. Azevedo, E. Rodríguez-Castellón, A. Jiménez-López, C.L.C. Jr, J. Mol. Catal. A: Chem. 281, 154 (2008)CrossRefGoogle Scholar
  22. 22.
    C. Zhou, Q. Gao, W. Luo, Q. Zhou, H. Wang, C. Yan, P. Duan, J. Taiwan Inst. Chem. Eng. 52, 147 (2015)CrossRefGoogle Scholar
  23. 23.
    C. Zhou, C. Yan, J. Zhao, H. Wang, Q. Zhou, W. Luo, J. Taiwan Inst. Chem. Eng. 62, 307 (2016)CrossRefGoogle Scholar
  24. 24.
    Q. Wu, X. Hu, P.L. Yue, X.S. Zhao, G.Q. Lu, Appl. Catal. B Environ. 32, 151 (2001)CrossRefGoogle Scholar
  25. 25.
    S.T. Wong, J.F. Lee, S. Cheng, C.Y. Mou, Appl. Catal. A Gen. 198, 115 (2000)CrossRefGoogle Scholar
  26. 26.
    Z. Xin, J.B. Jr, D. Duprez, Z. Hui, S. Royer, Appl. Catal. B Environ. S121–122, 123 (2012)Google Scholar
  27. 27.
    Y. Wang, Q. Zhang, T. Shishido, K. Takehira, J. Catal. 209, 186 (2002)CrossRefGoogle Scholar
  28. 28.
    S. Rudra, A.K. Nayak, S. Koley, R. Chakraborty, P.K. Maji, M. Pradhan, A.C.S. Sustain, Chem. Eng. 7, 724 (2018)Google Scholar
  29. 29.
    K. Li, Y. Zhao, M.J. Janik, C. Song, X. Guo, Appl. Surf. Sci. 396, 1383 (2017)CrossRefGoogle Scholar
  30. 30.
    C.R. Brundle, T.J. Chuang, K. Wandelt, C.R. Brundle, T.J. Chuang, K. Wandelt, Surf. Sci. 68, 459 (1977)CrossRefGoogle Scholar
  31. 31.
    T. Gross, M. Ramm, H. Sonntag, W. Unger, H.M. Weijers, E.H. Adem, Surf. Interface Anal. 18, 59 (1992)CrossRefGoogle Scholar
  32. 32.
    T. Wang, L. Zhang, H. Wang, W. Yang, Y. Fu, W. Zhou, W. Yu, K. Xiang, S. Zhen, S. Dai, ACS Appl. Mater. Interfaces. 5, 12449 (2013)CrossRefGoogle Scholar
  33. 33.
    K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, ACS Appl. Mater. Interfaces. 7, 9023 (2015)CrossRefGoogle Scholar
  34. 34.
    F. Parmigiani, G. Pacchioni, F. Illas, P.S. Bagus, J. Electron Spectrosc. Relat. Phenom. 59, 255 (1992)CrossRefGoogle Scholar
  35. 35.
    Z. Wu, R. Jin, Y. Liu, H. Wang, Catal. Commun. 9, 2217 (2008)CrossRefGoogle Scholar
  36. 36.
    Q. Guo, F. Liang, X.Y. Gao, Q.C. Gan, X.B. Li, J. Li, Z.S. Lin, C.H. Tung, L.Z. Wu, ACS Catal. 8, 5890 (2018)CrossRefGoogle Scholar
  37. 37.
    M.D.L. Cruz, U.M.G. Pérez, Mater. Res. Bull. 45, 135 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Radiology, Xinqiao HospitalArmy Medical UniversityChongqingChina

Personalised recommendations