Advertisement

Prediction of the deswelling behaviors of pH- and temperature-responsive poly(NIPAAm-co-AAc) IPN hydrogel by artificial intelligence techniques

  • Cihangir Boztepe
  • Mehmet YüceerEmail author
  • Asım Künkül
  • Musa Şölener
  • Osman S. Kabasakal
Article
  • 86 Downloads

Abstract

One of the most important fields of interest in respect of stimuli-responsive hydrogels is modeling and simulation of their deswelling behavior. The problem mentioned above plays an important role regarding diffusion of fluid from hydrogel to media, what is very useful in biomedical applications, such as controlled drug delivery systems, biomaterials or biosensors. In this study, the pH- and temperature-responsive poly(N-isopropylacrylamide-co-acrylic acid) interpenetrating polymer network (poly(NIPAAm-co-AAc) IPN) hydrogel was synthesized by free radical solution polymerization method. In order to improve the deswelling rate of the conventional poly(NIPAAm-co-AAc) hydrogels, their IPN structure was synthesized by using poly(NIPAAm-co-AAc) microgels. The chemical structure and surface morphology of poly(NIPAAm-co-AAc) IPN hydrogels were characterized by FT-IR and SEM analysis techniques. The synthesized poly(NIPAAm-co-AAc) IPN hydrogel has high swelling capacity (112 g water/g dry polymer at 20 °C and pH 7) and exhibited fast and multivariable deswelling behaviors dependent on pH and temperature. The pH- and temperature-dependent mechanical property of IPN hydrogel was investigated. It was found that the compressive strength of the IPN hydrogels was changed inversely proportional to the swelling capacity. To develop the model for deswelling behaviors of IPN hydrogel, artificial neural network (ANN) model and least squares support vector machine model techniques were used. The predictions from the ANN model showed very good correlation with observed data. The results indicated that the ANN model could accurately predict complex deswelling behavior of pH- and temperature-responsive IPN hydrogels.

Keywords

Stimuli-responsive hydrogels Deswelling kinetic ANN Modeling Biomedical hydrogels 

Notes

References

  1. 1.
    O. Ismail, A.S. Kipcak, S. Piskin, Res. Chem. Intermed. 39, 907 (2013)CrossRefGoogle Scholar
  2. 2.
    C. Boztepe, E. Tosun, T. Bilenler, K. Şişlioğlu, Int. J. Polym. Mater. Polym. Biomater. 66, 934 (2017)CrossRefGoogle Scholar
  3. 3.
    S. Çavuş, J. Polym. Sci. B Polym. Phys. 48, 2497 (2010)CrossRefGoogle Scholar
  4. 4.
    Q. Zhao, Y. Liang, L. Ren, F. Qui, Z. Zhang, L. Ren, J. Mech. Behav. Biomed. 78, 395 (2018)CrossRefGoogle Scholar
  5. 5.
    J. Qu, X. Zhao, P.X. Ma, B. Guo, Acta Biomater. 58, 168 (2017)CrossRefPubMedGoogle Scholar
  6. 6.
    N. Arbabi, M. Baghani, J. Abdolahi, H. Mazaheri, M. Mosavi-Mashhadi, J. Intell. Mater. Syst. Struct. 28(12), 1589 (2017)CrossRefGoogle Scholar
  7. 7.
    H. Li, R. Luo, J. Intell. Mater. Syst. Struct. 22, 715 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Guenther, M. Gerlach, T. Wallmersperger, J. Intell. Mater. Syst. Struct. 20, 949 (2009)CrossRefGoogle Scholar
  9. 9.
    J. Zhao, X. Zhao, B. Guo, P.X. Ma, Biomacromolecules 15, 3246 (2014)CrossRefPubMedGoogle Scholar
  10. 10.
    L. Zhang, L. Wang, B. Guo, P.X. Ma, Carbohydr. Polym. 103, 110 (2014)CrossRefPubMedGoogle Scholar
  11. 11.
    Y. Chen, G. Song, J. Yu, Y. Wang, J. Zhu, Z. Hu, J. Mech. Behav. Biomed. 82, 61 (2018)CrossRefGoogle Scholar
  12. 12.
    Z. Deng, Y. Guo, X. Zhao, P.X. Ma, B. Guo, Cham. Mater. 30, 1729 (2018)CrossRefGoogle Scholar
  13. 13.
    Y. Wu, L. Wang, B. Guo, P.X. Ma, ACS Nano 11, 5646 (2017)CrossRefPubMedGoogle Scholar
  14. 14.
    M. Ahearne, A. Coyle, J. Mech. Behav. Biomed. 54, 259 (2018)CrossRefGoogle Scholar
  15. 15.
    T.R. Hoare, D.S. Kohane, Polymer 49, 1993 (2008)CrossRefGoogle Scholar
  16. 16.
    Z. Deng, T. Hu, Q. Li, J. He, P.X. Ma, B. Guo, A.C.S. Appl, Mater. Interfaces. 11, 6796 (2019)CrossRefGoogle Scholar
  17. 17.
    J. Qu, X. Zhao, Y. Liang, T. Zhang, P.X. Ma, B. Guo, Biomaterials 183, 185 (2018)CrossRefPubMedGoogle Scholar
  18. 18.
    Y.C. Fu, C.H. Chen, C.Z. Wang, Y.H. Wang, J.K. Chang, G.J. Wang, M.L. Ho, C.K. Wang, J. Mech. Behav. Biomed. 27, 64 (2013)CrossRefGoogle Scholar
  19. 19.
    H. Mazaheri, M. Baghani, R. Naghdabadi, J. Intell. Mater. Syst. Struct. 27, 324 (2016)CrossRefGoogle Scholar
  20. 20.
    Z. Deng, Y. Guo, P.X. Ma, B. Guo, J. Colloid Interface Sci. 526, 281 (2018)CrossRefPubMedGoogle Scholar
  21. 21.
    D.E. Owens, Y. Jian, J.E. Fang, B.V. Slaughter, Y.H. Chen, N.A. Peppas, Macromolecules 40, 7306 (2007)CrossRefGoogle Scholar
  22. 22.
    A. Sarkar, S. Hegde, T. Mukherjee, S. Kapoor, Res. Chem. Intermed. 36, 309 (2010)CrossRefGoogle Scholar
  23. 23.
    J.T. Zhang, M. Thunga, S. Petersen, R. Bhat, X. Liu, R. Weidisch, A. Fahr, K.D. Jandt, Adv. Eng. Mater. 11(3), 12 (2009)CrossRefGoogle Scholar
  24. 24.
    K.L. Deng, H. Tian, P.F. Zhang, X.B. Ren, H.B. Zhong, Express. Polym. Lett. 3, 97 (2009)CrossRefGoogle Scholar
  25. 25.
    M. Pruettiphap, G.L. Rempel, Q. Pan, S. Kiatkamjornwong, Iran Polym. J. 26, 957 (2017)CrossRefGoogle Scholar
  26. 26.
    M. Sobczyk, T. Wallmersperger, J. Intell. Mater. Syst. Struct. 27(13), 1725 (2015)CrossRefGoogle Scholar
  27. 27.
    E. Rafiee, N. Nobakht, L. Behbood, Res. Chem. Intermed. 43, 951 (2017)CrossRefGoogle Scholar
  28. 28.
    Y. Liang, X. Zhao, P.X. Ma, B. Guo, Y. Du, X. Han, J. Colloid Interface Sci. 536, 224 (2019)CrossRefPubMedGoogle Scholar
  29. 29.
    T. Brend, K. Kraus, Colloid Polym. Sci. 292, 3127 (2012)Google Scholar
  30. 30.
    X. Yin, A.S. Hoffman, P.S. Stayton, Biomacromolecules 5, 1381 (2006)CrossRefGoogle Scholar
  31. 31.
    P.K. Lavric, M.S.G. Marijin, W.D. Jocic, Cellulose 19, 257 (2012)CrossRefGoogle Scholar
  32. 32.
    N. Şahiner, W.T. Godbey, G.L. McPherson, V.T. John, Colloid Polym. Sci. 284, 1121 (2006)CrossRefGoogle Scholar
  33. 33.
    Y. Guobin, H. Yunwei, X. Fuhua, L. Bing, Y. Jin, C. Xudong, J. Wuhan Univ. Technol. 26, 1073 (2011)CrossRefGoogle Scholar
  34. 34.
    G.B. Marandi, M. Baharloui, M. Kurdtabar, L.M. Sharabian, M.A. Mojarrad, Res. Chem. Intermed. 41, 7043 (2015)CrossRefGoogle Scholar
  35. 35.
    S. Peng, D. Zhang, H. Huang, Z. Jin, X. Peng, Res. Chem. Intermed. 45, 1545 (2019)CrossRefGoogle Scholar
  36. 36.
    A. Mohandas, W. Sun, T.R. Nimal, S.A. Shankarappa, N.S. Hwang, R. Jayakumar, Res. Chem. Intermed. 44, 4873 (2018)CrossRefGoogle Scholar
  37. 37.
    Y.Q. Xiang, Y. Zhang, D.J. Chen, Polym. Int. 55, 1407 (2006)CrossRefGoogle Scholar
  38. 38.
    K. Jalili, F. Abbasi, S.S. Oskoee, Z. Alinejad, J. Mech. Behav. Biomed. 2, 534 (2009)CrossRefGoogle Scholar
  39. 39.
    J. Jang, J. Hong, C. Cha, J. Mech. Behav. Biomed. 69, 282 (2017)CrossRefGoogle Scholar
  40. 40.
    V. Nigro, R. Angelini, M. Bertoldo, V. Castelvetro, G. Ruocco, B. Ruzicka, J Non-Cryst Solids 407, 361 (2015)CrossRefGoogle Scholar
  41. 41.
    X. Zhao, J. Mech. Phys. Solids 60, 319 (2012)CrossRefGoogle Scholar
  42. 42.
    J. Hao, Y. Liu, S. Zhou, Z. Li, X. Deng, Biomaterials 24, 1531 (2003)CrossRefPubMedGoogle Scholar
  43. 43.
    B. Jankovic, B. Adnadevic, J. Jovanovic, Thermochim. Acta 452, 106 (2007)CrossRefGoogle Scholar
  44. 44.
    F. Jiang, S. Chen, Z. Cao, G. Wang, Polymer 83, 85 (2016)CrossRefGoogle Scholar
  45. 45.
    F. Taktak, AKU. J. Sci. Eng. 16, 68 (2016)CrossRefGoogle Scholar
  46. 46.
    H. Li, Smart hydrogel modeling (Springer, Berlin, 2009), pp. 4–47CrossRefGoogle Scholar
  47. 47.
    P.J. Flory, Principles of polymer chemistry (Cornell University Press, Ithaca, 1953), pp. 12–67Google Scholar
  48. 48.
    T. Wallmersperger, B. Kroplin, J. Holdenried, W. Gulch, Smart Mater. Struct. 20(12), 1483 (2001)Google Scholar
  49. 49.
    X. Zhou, Y.C. Hon, S. Sun, A.F.T. Mak, Smart Mater. Struct. 11, 459 (2002)CrossRefGoogle Scholar
  50. 50.
    D. Ostrovskii, M. Edvardsson, P. Jacobsson, J. Raman Spectrosc. 34, 40 (2003)CrossRefGoogle Scholar
  51. 51.
    C.H. Li, X.J. Zhu, G.Y. Cao, S. Sui, M.R. Hu, J. Power Sources 175, 303 (2008)CrossRefGoogle Scholar
  52. 52.
    H. Schott, J. Macromol. Sci. Part B Phys. 31, 1 (1992)CrossRefGoogle Scholar
  53. 53.
    G. Astarita, in Transport phenomena in polymeric systems, ed. by R.A. Mashelkar, A.S. Mujumdar, R. Kamal (Wiley, New York, 1989), p. 339Google Scholar
  54. 54.
    A.R. Berens, H.B. Hopfenberg, Polymer 19, 489 (1978)CrossRefGoogle Scholar
  55. 55.
    A.K. Bajpai, M. Shrivastava, J. Sci. Ind. Res. 60, 131 (2001)Google Scholar
  56. 56.
    E.F. Lee, P.L. Yeh, J. Appl. Polym. Sci. 77, 14 (2000)CrossRefGoogle Scholar
  57. 57.
    A.K. Bajpai, A. Giri, React. Funct. Polym. 53, 125 (2002)CrossRefGoogle Scholar
  58. 58.
    S.J. Kim, S.J. Park, I.Y. Kim, M.S. Shin, S.I. Kim, J. Appl. Polym. Sci. 86, 2285 (2002)CrossRefGoogle Scholar
  59. 59.
    K.Y. Lee, K.H. Bouhadir, D.J. Mooney, Macromolecules 33, 97 (2000)CrossRefGoogle Scholar
  60. 60.
    D.J.T. Hill, N.G. Moss, P.J. Pomery, A.K. Whittaker, Polymer 41, 1287 (2000)CrossRefGoogle Scholar
  61. 61.
    N.E. Angar, D. Aliouche, Period. Polytech. Chem. Eng. 62(2), 137 (2017)CrossRefGoogle Scholar
  62. 62.
    A. Richter, G. Paschew, S. Klatt, K.F. Arndt, H.J. Adler, Sensors 8, 561 (2008)CrossRefPubMedGoogle Scholar
  63. 63.
    S. Brahima, C. Boztepe, A. Künkül, M. Yüceer, Mat. Sci. Eng. C. 75, 425 (2017)CrossRefGoogle Scholar
  64. 64.
    E. Karadurmuş, M. Çeşmeci, M. Yüceer, R. Berber, Appl. Soft. C. 12, 494 (2012)CrossRefGoogle Scholar
  65. 65.
    G. Rajabzadeh, S. Salehi, A. Nemati, R. Tavakoli, M.S. Hashjin, J. Mech. Behav. Biomed. 29, 317 (2014)CrossRefGoogle Scholar
  66. 66.
    T. Karadağ, M. Yüceer, T. Abbasov, Radiat. Prot. Dosim. 168, 134 (2015)CrossRefGoogle Scholar
  67. 67.
    M.L. Koç, U. Özdemir, D. İmren, Chem. Eng. Sci. 63, 2913 (2008)CrossRefGoogle Scholar
  68. 68.
    A. Sarımeşeli, M. Yüceer, Chem. Eng. Process. 36, 425 (2015)CrossRefGoogle Scholar
  69. 69.
    C. Boztepe, M. Şölener, M. Yüceer, A. Künkül, O.S. Kabasakal, J. Dispers. Sci. Technol. 36, 1647 (2015)CrossRefGoogle Scholar
  70. 70.
    M. Yüceer, Z. Yıldız, T. Abbasov, Physicochem. Probl. Process. 51, 173 (2015)Google Scholar
  71. 71.
    A. Borin, M.F. Ferrao, C. Mello, D.A. Maretto, J.R. Poppi, Anal. Chim. Acta 579, 25 (2006)CrossRefPubMedGoogle Scholar
  72. 72.
    Y. Ke, C. Yiyu, Chi. J. Anal. Chem. 34, 561 (2006)CrossRefGoogle Scholar
  73. 73.
    A.D. Drozdov, J.C. Christiansen, J. Mech. Behav. Biomed. 65, 533 (2017)CrossRefGoogle Scholar
  74. 74.
    J. Ma, Y. Xu, Q. Zhang, L. Zha, B. Liang, Colloid Polym. Sci. 285, 479 (2007)CrossRefGoogle Scholar
  75. 75.
    N. Hamzavi, A.D. Drozdov, Y. Gu, E. Birgersson, J. Appl. Mech. 8, 1650039 (2016)CrossRefGoogle Scholar
  76. 76.
    B. Andadevic, B. Jankovic, L.K. Anic, D. Minic, Chem. Eng. J. 130, 11 (2007)CrossRefGoogle Scholar
  77. 77.
    K. Chamerski, W. Korzekwa, J. Filipecki, O. Shpotyuk, M. Stopa, P. Jelen, M. Sitarz, Res. Lett. 12, 303 (2017)Google Scholar
  78. 78.
    H.V. Chavda, C.N. Patel, Ethiop. Pharm. J. 27, 16 (2009)Google Scholar
  79. 79.
    K. Laszlo, A. Fluerasu, A. Moussaid, E. Geissler, Soft Matter 6, 4335 (2010)Google Scholar
  80. 80.
    T. Serizawa, K. Wakita, M. Akashi, Macromolecules 35, 10 (2002)CrossRefGoogle Scholar
  81. 81.
    K. Levenberg, Q. Appl. Math. 2, 164 (1994)CrossRefGoogle Scholar
  82. 82.
    J.A.K. Suykens, J. Vandewalle, J. Neural. Process. Lett. 9, 293 (1999)CrossRefGoogle Scholar
  83. 83.
    Z. Cheng, HKIE Trans. 20, 141 (2013)CrossRefGoogle Scholar
  84. 84.
    C. Zhang, H. Zhang, Int. J. Comp. Integr. Manuf. 1, 76 (2014)Google Scholar
  85. 85.
    J. Liu, Q. Li, Y. Su, Q. Yue, B. Gao, Carbohydr. Polym. 107, 232 (2014)CrossRefPubMedGoogle Scholar
  86. 86.
    Y. Yu, Y. Liu, Y. Kong, E. Zhang, F. Jia, S. Li, Polym. Plast. Technol. Eng. 51, 854 (2012)CrossRefGoogle Scholar
  87. 87.
    J. Zhang, L.Y. Chu, Y.K. Li, Y.M. Lee, Polymer 48, 1718 (2007)CrossRefGoogle Scholar
  88. 88.
    L.Y. Chu, in Smart hydrogel functional materials, ed. by L.Y. Chu, R. Xie, X.J. Ju, W. Wang (Springer, New York, 2013), p. 13CrossRefGoogle Scholar
  89. 89.
    N. Zhang, S. Zheng, Z. Pan, Z. Liu, Polymers 10, 358 (2018)CrossRefPubMedCentralGoogle Scholar
  90. 90.

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, Faculty of EngineeringInonu UniversityMalatyaTurkey
  2. 2.Department of Chemical Engineering, Faculty of EngineeringInonu UniversityMalatyaTurkey
  3. 3.Department of Chemical Engineering, Faculty of EngineeringEskisehir Osmangazi UniversityEskisehirTurkey

Personalised recommendations