An efficiently and quickly synthesized NiO@g-C3N4 nanocomposite-catalyzed green synthesis of spirooxindole derivatives

  • Zahra Amini Moqadam
  • Ali Allahresani
  • Hassan HassaniEmail author


NiO@g-C3N4 as an efficient catalyst for the synthesis of spirooxindole derivatives was prepared by impregnation of g-C3N4 with NiO nanoparticles and characterized by various techniques including thermogravimetric analysis, transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The one-pot synthesis of spirooxindole derivatives using 1 mmol isatin, 1 mmol dimedone (or 4-hydroxycoumarin or ethyl acetoacetate) and 1 mmol malononitrile was carried out in the presence of 50 mg NiO@g-C3N4 in EtOH media at reflux conditions. The results showed that both series of reactions had short reaction times (less than 7 min) and high reaction efficiency (greater than 87%). Some advantages can be cited for this method, including short reaction time, excellent yields, easy workup and a reusable and inexpensive nanocatalyst.


4-Hydroxycoumarin Dimedone Isatin Malononitrile NiO@g-C3N4 Spirooxindole derivatives 



The authors are grateful to the University of Birjand and Payam Noor University of Mashhad for financial support.


  1. 1.
    I.O. Ghinea, R.M. Dinica, New synthetic pathways, new applications, in Scope of Selective Heterocycles from Organic and Pharmaceutical Perspective, ed. by R. Varala (InTech, Rijeka, 2017), p. 115Google Scholar
  2. 2.
    I.V. Borovlev, O.P. Demidov, G.A. Amangasieva, E.K. Avakyan, N.A. Kurnosova, J. Heterocycl. Chem. 406, 54 (2016)Google Scholar
  3. 3.
    N. Azizi, E. Gholibeghlo, Z. Manocheri, Sci. Iran. 19, 574 (2012)CrossRefGoogle Scholar
  4. 4.
    S. Budde, J.K. Ega, B. Gavaji, R. Vadde, Int. J. Res. Appl. 2, 365 (2015)Google Scholar
  5. 5.
    G. Mohammadi Ziarani, R. Moradi, A. Badiei, N. Lashgari, B. Moradi, A. Abolhasani Soorki, J. Taibah Univ. Sci. 9, 555 (2015)CrossRefGoogle Scholar
  6. 6.
    K. Rad-Moghadama, S. Gholizadeh, IJC 4, 41 (2014)Google Scholar
  7. 7.
    F.X. Felpin, O. Ibarguren, L. Nassar-Hardy, E. Fouquet, J. Org. Chem. 74, 1349 (2009)CrossRefGoogle Scholar
  8. 8.
    J. Kothandapani, A. Ganesan, G.K. Mani, A.J. Kulandaisamy, J.B. Balaguru Rayappan, S.S. Ganesan, Tetrahedron Lett. 57, 3472 (2016)CrossRefGoogle Scholar
  9. 9.
    A. Allahresani, Iran. J. Catal. 7, 293 (2017)Google Scholar
  10. 10.
    J.A. Makawana, C.B. Sangani, Y.F. Yao, Y.T. Duan, P.C. Lv, H.L. Zhu, Mini Rev. Med. Chem. 16, 1303 (2016)CrossRefGoogle Scholar
  11. 11.
    M.A. Nasseri, F. Kamali, B. Zakerinasab, RSC Adv. 5, 26517 (2015)CrossRefGoogle Scholar
  12. 12.
    J.A. Tanna, R.G. Chaudhary, N.V. Gandhare, A.R. Rai, H.D. Juneja, IJSER 6, 93 (2015)Google Scholar
  13. 13.
    R.J. Kalbasi, N. Mosaddegh, Bull. Korean Chem. Soc. 32, 2584 (2011)CrossRefGoogle Scholar
  14. 14.
    L.L. Chng, N. Erathodiyil, J.Y. Ying, Acc. Chem. Res. 46, 1825 (2013)CrossRefGoogle Scholar
  15. 15.
    H. Sachdeva, D. Dwivedi, R.R. Bhattacharjee, S. Khaturia, R. Saroj, J. Chem. 2013, 1 (2013)CrossRefGoogle Scholar
  16. 16.
    X. Miao, X. Shen, J. Wu, Z. Ji, J. Wang, L. Kong, M. Liu, C. Song, Appl. Catal. A Gen. 539, 104 (2017)CrossRefGoogle Scholar
  17. 17.
    H. Liu, Z. Xu, Z. Zhang, D. Ao, Appl. Catal. A Gen. 518, 150 (2016)CrossRefGoogle Scholar
  18. 18.
    L. Ge, C. Han, J. Liu, Y. Li, Appl. Catal. A Gen. 409–410, 215 (2011)CrossRefGoogle Scholar
  19. 19.
    Q. Hao, X. Niu, C. Nie, S. Hao, W. Zou, J. Gea, D. Chen, W. Yao, Phys. Chem. Chem. Phys. 18, 31410 (2016)CrossRefGoogle Scholar
  20. 20.
    B. Lin, C. Xue, X. Yan, G. Yang, G. Yang, Appl. Surf. Sci. 357, 346 (2015)CrossRefGoogle Scholar
  21. 21.
    L.C. Chen, X.T. Zeng, P. Si, Y.M. Chen, Y.W. Chi, D.H. Kim, G. Chen, Anal. Chem. 86, 4188 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlogl, J.M. Carlsson, J. Mater. Chem. 18, 4893 (2008)CrossRefGoogle Scholar
  23. 23.
    X. Wang, K. Maeda, A. Thomas, K. Takanabe, Nat. Mater. 8, 76 (2009)CrossRefGoogle Scholar
  24. 24.
    B. Long, J. Lin, X. Wang, J. Mater. Chem. A 2, 2942 (2014)CrossRefGoogle Scholar
  25. 25.
    A. Allahresani, B. Taheri, M.A. Nasseri, Res. Chem. Intermed. 44, 6979 (2018)CrossRefGoogle Scholar
  26. 26.
    A. Allahresani, B. Taheri, M.A. Nasseri, Res. Chem. Intermed. 44, 1173 (2018)CrossRefGoogle Scholar
  27. 27.
    A. Allahresani, M.A. Nasseri, A. Nakhaei, Res. Chem. Intermed. 43, 6367 (2017)CrossRefGoogle Scholar
  28. 28.
    S. Riyaz, A. Indrasena, A. Naidu, P.K. Dubey, Indian J. Chem. B 53, 1442 (2014)Google Scholar
  29. 29.
    R.Y. Guo, Z.M. An, L.P. Mo, S.-T. Yang, H.-X. Liu, S.-X. Wang, Z.-H. Zhang, Tetrahedron 69, 9931 (2013)CrossRefGoogle Scholar
  30. 30.
    C. Wu, R. Shen, J. Chen, C. Hu, Bull. Korean Chem. Soc. 34, 2431 (2013)CrossRefGoogle Scholar
  31. 31.
    S.P. Satasia, P.N. Kalaria, J.R. Avalani, D.K. Raval, Tetrahedron 70, 5763 (2014)CrossRefGoogle Scholar
  32. 32.
    P. Rai, M. Srivastava, J. Singh, J. Singh, New J. Chem. 38, 3181 (2014)CrossRefGoogle Scholar
  33. 33.
    A. Hasaninejad, N. Golzar, M. Beyrati, A. Zare, M.M. Doroodmand, J. Mol. Catal. A Chem. 372, 137 (2013)CrossRefGoogle Scholar
  34. 34.
    L.-M. Wang, N. Jiao, J. Qiu, J.-J. Yu, J.-Q. Liu, F.-L. Guo, Y. Liu, Tetrahedron 66, 339 (2010)CrossRefGoogle Scholar
  35. 35.
    M.N. Elinson, R.F. Nasybullin, F.V. Ryzhkov, T.A. Zaimovskaya, G.I. Nikishi, Monatsh. Chem. 146, 631 (2015)CrossRefGoogle Scholar
  36. 36.
    S.J. Chai, Y.F. Lai, J.C. Xu, H. Zheng, Q. Zhu, P.F. Zhang, Advanc. Synth. Catal. 353, 371 (2011)Google Scholar
  37. 37.
    L. Zhao, B. Zhou, Y. Li, Heteroatom Chem. 22, 673 (2011)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Zahra Amini Moqadam
    • 1
  • Ali Allahresani
    • 2
  • Hassan Hassani
    • 1
    Email author
  1. 1.Department of ChemistryPayam Noor UniversityMashhadIran
  2. 2.Department of Chemistry, Faculty of SciencesUniversity of BirjandBirjandIran

Personalised recommendations