Advertisement

ZnO nanoparticles photocatalytic activity toward atmospheric toluene under simulated sunlight

  • 68 Accesses

Abstract

In this study, the photocatalytic degradation of toluene through zinc oxide (ZnO) nanoparticles coated on glass plates was examined under simulated sunlight. Heat attachment procedure was employed to immobilize ZnO nanoparticles on glass plates. Removal performance of these prepared plates for toluene degradation was evaluated in a rectangular reactor under irradiation of metal halide lamp. The effects of operational parameters including initial toluene concentration, temperature, relative humidity, irradiation time, and concentration of zinc oxide suspension on the removal of toluene were investigated. The structural properties of ZnO nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The concentration of toluene was analyzed by gas chromatography with flame ionization detector (GC-FID). The results of the present study indicated that ZnO-coated glass plates resulted in removal of 67% toluene for concentration of 50 ppm at temperature 45 °C, and relative humidity of 40% after 240 min irradiation of metal halide light. As the glass plates coated by ZnO have relatively good performance under experimental conditions, it concluded that coating ZnO nanoparticles on surfaces can be considered as an environmentally friendly method to eliminate low concentration of toluene from polluted air under sunlight.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    J. Ji et al., Chem. Eng. J. 327, 490 (2017)

  2. 2.

    R.-J. Huang et al., Nature 514(7521), 218 (2014)

  3. 3.

    ATSDR, Toxicological Profile for Toluene (Public Health Service, 2017)

  4. 4.

    U.S., E.P.A., Integrated Risk Information System (IRIS) on Toluene (2005)

  5. 5.

    X. Zhang et al., J. Hazard. Mater. 338, 102 (2017)

  6. 6.

    Z. Zhang, Z. Jiang, W. Shangguan, Catal. Today 264, 270 (2016)

  7. 7.

    M.S. Kamal, S.A. Razzak, M.M. Hossain, Atmos. Environ. 140, 117 (2016)

  8. 8.

    A. Berenjian, N. Chan, H.J. Malmiri, Am. J. Biochem. Biotechnol. 8(4), 220 (2012)

  9. 9.

    A. Luengas et al., Rev. Environ. Sci. Bio/Technol. 14(3), 499 (2015)

  10. 10.

    L. Zhong, F. Haghighat, Build. Environ. 91, 191 (2015)

  11. 11.

    Y. Boyjoo et al., Chem. Eng. J. 310, 537 (2017)

  12. 12.

    R. Tejasvi, M. Sharma, K. Upadhyay, Chem. Eng. J. 262, 875 (2015)

  13. 13.

    R.K. Nath, M. Zain, M. Jamil, Renew. Sustain. Energy Rev. 62, 1184 (2016)

  14. 14.

    F. Pacheco-Torgal, S. Jalali, Constr. Build. Mater. 25(2), 582 (2011)

  15. 15.

    S. Shen et al., Constr. Build. Mater. 35, 874 (2012)

  16. 16.

    Q. Yu, M.M. Ballari, H. Brouwers, Appl. Catal. B 99(1–2), 58 (2010)

  17. 17.

    J. Chen, S.-C. Kou, C.-S. Poon, Build. Environ. 46(9), 1827 (2011)

  18. 18.

    D. Selishchev et al., Appl. Catal. B 200, 503 (2017)

  19. 19.

    T. Martinez et al., Build. Environ. 71, 186 (2014)

  20. 20.

    A.M. Ramirez et al., Build. Environ. 45(4), 832 (2010)

  21. 21.

    C.B. Ong, L.Y. Ng, A.W. Mohammad, Renew. Sustain. Energy Rev. 81, 536 (2018)

  22. 22.

    L. Lan et al., Appl. Catal. B 203, 494 (2017)

  23. 23.

    İ. Altın et al., Appl. Surf. Sci. 258(11), 4861 (2012)

  24. 24.

    A. Moezzi, A.M. McDonagh, M.B. Cortie, Chem. Eng. J. 185, 1 (2012)

  25. 25.

    M.A. Behnajady et al., Desalination 249(3), 1371 (2009)

  26. 26.

    M. Gholami et al., J. Environ. Health Sci. Eng. 12(1), 45 (2014)

  27. 27.

    V. Binas et al., J. Materiomics 5(1), 56 (2019)

  28. 28.

    M. Sleiman et al., Appl. Catal. B 86(3–4), 159 (2009)

  29. 29.

    L. Hu et al., J. Mol. Catal. A Chem. 411, 203 (2016)

  30. 30.

    O. Debono et al., Appl. Catal. B 106(3–4), 600 (2011)

  31. 31.

    S. Yao, H. Kuo, Procedia Eng. 102, 1254 (2015)

  32. 32.

    J. Mo et al., Atmos. Environ. 43(14), 2229 (2009)

  33. 33.

    C.W. Yu, J.T. Kim, Indoor Built Environ. 22(1), 39 (2013)

  34. 34.

    A.H. Mamaghani, F. Haghighat, C.-S. Lee, Appl. Catal. B 203, 247 (2017)

  35. 35.

    J. Lyu, L. Zhu, C. Burda, Catal. Today 225, 24 (2014)

  36. 36.

    H. Huang et al., Chem. Eng. J. 259, 534 (2015)

  37. 37.

    T.-D. Pham, B.-K. Lee, C.-H. Lee, Appl. Catal. B 182, 172 (2016)

  38. 38.

    A. Gandolfo et al., Appl. Catal. B 166, 84 (2015)

  39. 39.

    Q. Yu, H. Brouwers, Appl. Catal. B 92(3–4), 454 (2009)

  40. 40.

    A. Rezaee et al., Environ. Chem. Lett. 12(2), 353 (2014)

  41. 41.

    M. Rismanchian, J. Akbari, R. Keshavarzi, Int. J. Environ. Health Eng. 3(1), 29 (2014)

  42. 42.

    A. Rezaee et al., Iran J Environ Health Sci Eng 5(4), 305 (2008)

  43. 43.

    U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170(2–3), 520 (2009)

  44. 44.

    A. Senthilraja et al., J. Ind. Eng. Chem. 33, 51 (2016)

  45. 45.

    M. Jafarikojour et al., Clean 43(5), 662 (2015)

Download references

Acknowledgements

This work was partially supported by Iran University of Medical Sciences (Grant Number 27576). We would like to thank Iran University of Medical Sciences for financially supporting this study.

Author information

Correspondence to Masoumeh Hasham Firooz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jafari, A.J., Kalantari, R.R., Kermani, M. et al. ZnO nanoparticles photocatalytic activity toward atmospheric toluene under simulated sunlight. Res Chem Intermed 46, 119–131 (2020) doi:10.1007/s11164-019-03938-6

Download citation

Keywords

  • Toluene
  • Air pollution
  • Photocatalytic degradation
  • ZnO nanoparticles
  • Simulated sunlight