Research on Chemical Intermediates

, Volume 46, Issue 1, pp 101–118 | Cite as

Immobilization of horseradish peroxidase on polyglycerol-functionalized magnetic Fe3O4/nanodiamond nanocomposites and its application in phenol biodegradation

  • Anxia Li
  • Xiaoxin Yang
  • Binglong Yu
  • Xiulan CaiEmail author


In this study, Fe3O4/nanodiamond nanocomposites (MND) were synthesized by polyglycerol-mediated covalent bonding. The horseradish peroxidase (HRP) was successfully immobilized on PG layer of MND by interaction between functional groups of MND and HRP, where the HRP molecules became tridimensionally connected outside the MND. The physicochemical properties of MND were analyzed by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy measurements, vibrating sample magnetometer, Fourier transform infrared spectroscopy and zeta potential. The optimal conditions for the immobilization of HRP by MND are 7 mg/L, 35 °C and 3 h, respectively. Then, the effects of temperature, pH and storage time on the activity of immobilized enzyme and free enzyme were studied. The results showed that the relative activities of immobilized enzymes were higher than free enzymes at different temperatures, pH and storage time. In addition, the reusability experiments of immobilized enzymes showed that after six cycles, the immobilized HRP retained a relative activity of 75%. Applied to the removal of phenol, the effects of phenol concentration, H2O2/phenol molar concentration, immobilized HRP concentration and temperature on phenol removal were investigated. The results displayed that the removal efficiency of phenol reached a maximum when the phenol concentration was 75 mg/L, the ratio of H2O2 to phenol was 1, the immobilized HRP concentration was 0.25 mg/L and the temperature was 30 °C. The above results indicate that the immobilized HRP exhibits high removal efficiency and has great potential for removing phenol.


Magnetic Fe3O4/nanodiamond nanocomposites Polyglycerol Immobilized horseradish peroxidase Phenol biodegradation 



This work was supported by the Project of Innovation for Enhancing Guangdong Pharmaceutical University, Provincial Experimental Teaching Demonstration Center of Chemistry and Chemical Engineering.


  1. 1.
    N.V. Pradeep, S. Anupama, K. Navya, H.N. Shalini, M. Idris, U.S. Hampannavar, Appl. Water Sci. 5, 105 (2015)Google Scholar
  2. 2.
    K.M. Koeller, C.H. Wong, Nature 409, 232 (2001)PubMedGoogle Scholar
  3. 3.
    J. Ai, W. Zhang, H. Xia, D. Wang, RSC Adv. 6, 38117 (2016)Google Scholar
  4. 4.
    S. Roger, V.P. Sander, Chem. Soc. Rev. 42, 6223 (2013)Google Scholar
  5. 5.
    I. Iñarritu, E. Torres, A. Topete, J. Campos-Terán, J. Colloid Interface Sci. 506, 36 (2017)PubMedGoogle Scholar
  6. 6.
    J. Du, M.D. Cao, S.L. Feng, F. Su, X.J. Sang, L.C. Zhang, W.S. You, M. Yang, Z.M. Zhu, Chem. Eur. J. 23, 14614 (2017)PubMedGoogle Scholar
  7. 7.
    C. Qing, Z. Lihua, J. Guodong, T. Heqing, Anal. Bioanal. Chem. 395, 2377 (2009)Google Scholar
  8. 8.
    F. Zhang, B. Zheng, J. Zhang, X. Huang, H. Liu, S. Guo, J. Zhang, J. Phys. Chem. C 114, 8469 (2010)Google Scholar
  9. 9.
    R. Zhai, B. Zhang, Y. Wan, C. Li, J. Wang, J. Liu, Chem. Eng. J. 214, 304 (2013)Google Scholar
  10. 10.
    L. Jianping, J. Huangxian, Chem. Soc. Rev. 41, 2122 (2012)Google Scholar
  11. 11.
    R. Xu, Y. Si, F. Li, B. Zhang, Environ. Sci. Pollut. Res. 22, 3838 (2015)Google Scholar
  12. 12.
    Z. Karim, R. Adnan, Q. Husain, Int. Biodeterior. Biodegrad. 72, 10 (2012)Google Scholar
  13. 13.
    Y. Su, X. Zhou, Y. Long, W. Li, Microchim. Acta 185, 114 (2018)Google Scholar
  14. 14.
    H. Sun, X. Jin, F. Jiang, R. Zhang, Biotechnol. Appl. Biochem. 65, 220 (2018)PubMedGoogle Scholar
  15. 15.
    C. Garcia-Galan, Á. Berenguer-Murcia, R. Fernandez-Lafuente, R.C. Rodrigues, Adv. Synth. Catal. 353, 2885 (2011)Google Scholar
  16. 16.
    Z. Paolo, S. Enrico, Molecules 19, 14139 (2014)Google Scholar
  17. 17.
    E. Yilmaz, Hİ. Ulusoy, Ö. Demir, M. Soylak, J. Chromatogr. B 1084, 113 (2018)Google Scholar
  18. 18.
    A.I. Gopalan, S. Komathi, G.S. Anand, K.P. Lee, Biosens. Bioelectron. 46, 136 (2013)PubMedGoogle Scholar
  19. 19.
    L. Wei, W. Zhang, H. Lu, P. Yang, Talanta 80, 1298 (2010)PubMedGoogle Scholar
  20. 20.
    N. Sohrabi, N. Rasouli, M. Torkzadeh, Chem. Eng. J. 286, 216 (2016)Google Scholar
  21. 21.
    Q. Chang, J. Huang, Y. Ding, H. Tang, Molecules 21, 1044 (2016)PubMedCentralGoogle Scholar
  22. 22.
    J. Feng, S. Yu, J. Li, T. Mo, P. Li, Chem. Eng. J. 286, 216 (2016)Google Scholar
  23. 23.
    S. Kim, J. Lee, S. Jang, H. Lee, D. Sung, J.H. Chang, Biochem. Eng. J. 105, 406 (2016)Google Scholar
  24. 24.
    L. Zhao, T. Chano, S. Morikawa, Y. Saito, A. Shiino, S. Shimizu, T. Maeda, T. Irie, S. Aonuma, H. Okabe, Adv. Funct. Mater. 22, 5107 (2012)Google Scholar
  25. 25.
    Z. Li, T. Tatsuya, I. Masaaki, K. Naoko, K. Takahide, K. Naoki, Angew. Chem. Int. Ed. 50, 1388 (2011)Google Scholar
  26. 26.
    X. Yang, Y. Wen, A. Wu, M. Xu, T. Amano, L. Zheng, L. Zhao, Mater. Sci. Eng. C 80, 517 (2017)Google Scholar
  27. 27.
    X. Yang, L. Zhao, L. Zheng, M. Xu, X. Cai, Colloids Surf. B 163, 167 (2017)Google Scholar
  28. 28.
    X. Yang, A. Li, W. Wang, C. Zhang, J. Wang, B. Yu, X. Cai, J. Chem. Technol. Biotechnol. 93, 2635 (2018)Google Scholar
  29. 29.
    L. Wang, K.G. Neoh, E.T. Kang, B. Shuter, S.C. Wang, Adv. Funct. Mater. 19, 2615 (2010)Google Scholar
  30. 30.
    J.B.W. Hammond, N.J. Kruger, Methods Mol. Biol. 32, 9 (1988)Google Scholar
  31. 31.
    L.A. Decker, Worthington enzyme manual (1977)Google Scholar
  32. 32.
    I. Nair, C. Indu, K. Jayachandran, S. Shashidhar, Afr. J. Biotechnol. 7, 4951 (2008)Google Scholar
  33. 33.
    M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, J. Hazard. Mater. 190, 993 (2011)PubMedGoogle Scholar
  34. 34.
    B. Ren, J. Huang, H. Yu, W. Yang, L. Wang, Z. Pan, L. Wang, Appl. Surf. Sci. 388, 565 (2016)Google Scholar
  35. 35.
    L. Zhao, Y.H. Xu, H. Qin, S. Abe, T. Akasaka, T. Chano, F. Watari, T. Kimura, N. Komatsu, X. Chen, Adv. Funct. Mater. 24, 5348 (2014)Google Scholar
  36. 36.
    A. Xie, J. Dai, X. Chen, P. Ma, J. He, C. Li, Z. Zhou, Y. Yan, Chem. Eng. J. 304, 609 (2016)Google Scholar
  37. 37.
    B. Huang, Y. Liu, B. Li, S. Liu, G. Zeng, Z. Zeng, X. Wang, Q. Ning, B. Zheng, C. Yang, Carbohydr. Polym. 157, 576 (2017)PubMedGoogle Scholar
  38. 38.
    A.Z. Badruddoza, A.S. Tay, P.Y. Tan, K. Hidajat, M.S. Uddin, J. Hazard. Mater. 185, 1177 (2011)PubMedGoogle Scholar
  39. 39.
    S. Cho, J.W. Jang, J.S. Lee, K.H. Lee, CrystEngComm 12, 3929 (2010)Google Scholar
  40. 40.
    Y. Lei, F. Chen, Y. Luo, L. Zhang, J. Mater. Sci. 49, 4236 (2014)Google Scholar
  41. 41.
    S. Akbar, S.K. Hasanain, M. Abbas, S. Ozcan, B. Ali, S.I. Shah, Solid State Commun. 151, 17 (2011)Google Scholar
  42. 42.
    C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente, Enzyme Microb. Technol. 40, 1451 (2007)Google Scholar
  43. 43.
    S.A. Ansari, Q. Husain, Biotechnol. Adv. 30, 512 (2012)PubMedGoogle Scholar
  44. 44.
    J. Wang, W. Zhang, C. Gu, W. Zhang, M. Zhou, Z. Wang, C. Guo, L. Sun, Chem. Asian J. 12, 3162 (2017)PubMedGoogle Scholar
  45. 45.
    J. Cheng, S.M. Yu, P. Zuo, Water Res. 40, 283 (2006)PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Anxia Li
    • 1
  • Xiaoxin Yang
    • 1
  • Binglong Yu
    • 1
  • Xiulan Cai
    • 1
    Email author
  1. 1.Guangdong Engineering and Technology Research Center of Topic Precise Drug Delivery System, School of PharmacyGuangdong Pharmaceutical UniversityGuangzhouChina

Personalised recommendations