Advertisement

Application of immobilized sulfonic acid on the cobalt ferrite magnetic nanocatalyst (CoFe2O4@SiO2@SO3H) in the synthesis of spirooxindoles

  • Bardia Zamani-Ranjbar-Garmroodi
  • Mohammad A. NasseriEmail author
  • Ali Allahresani
  • Kaveh Hemmat
Article
  • 13 Downloads

Abstract

Sulfonic acid immobilized on the surface of magnetically cobalt ferrite/silicate is a green, convenient, efficient and recyclable catalyst which can be applied in organic reactions ranges from lab to industry goals as a solid acid to achieve high yield products. After synthesizing (CoFe2O4/SiO2/SO3H), it was also characterized by using different techniques such as FT-IR, XRD, EDX, VSM, TEM, SEM, TGA and so on which everyone approved presented structure. In this study, we are on to use this catalyst in a certain multicomponent reaction that is a common way to produce heterocycle compounds in order to synthesis spirooxindole derivatives which possess biological capabilities as anticancer and antimicrobial drugs. Hence, the three-component reaction of malononitrile, dimedone and isatin were performed in one pot under optimized situations of 80 °C temperature, reflux condition and water/ethanol (1:1) mixture as the solvent. Also, the present study shows unique advantages, such as simple synthesis of the catalyst, high magnetic properties, easy separation of catalyst with a permanent magnet, and the application of inexpensive and available precursors. At the end of the reaction, we gained the high yields of product at a short time that represents the high catalytic activity of the catalyst.

Keywords

Cobalt ferrite Solid acid MCRs Spirooxindole 

Notes

Acknowledgements

We gratefully acknowledge the support of this work by the University of Birjand.

References

  1. 1.
    R.A. Sheldon, I. Arends, Ulf. Hanefeld, Green Chem and Cat (Wiley-VCH, Weinheim, 2007), p. 1CrossRefGoogle Scholar
  2. 2.
    R. Dalpozzo, Green Chem. 17, 3671 (2015)CrossRefGoogle Scholar
  3. 3.
    A. Allahresani, B. Taheri, M.A. Nasseri, Res. Chem. Intermed. 44, 6979 (2018)CrossRefGoogle Scholar
  4. 4.
    J. Cao, S. Shen, P. Yang, J. Qu, Org. Lett. 15, 3856 (2013)CrossRefGoogle Scholar
  5. 5.
    P.T. Anastas, J.B. Zimmermann, Environ. Sci. Technol. 37, 94A (2003)CrossRefGoogle Scholar
  6. 6.
    M. Maruthamuthu, E. Subramanian, J. Chem. Sci. 101, 259 (1989)Google Scholar
  7. 7.
    H. Liu, T. Jiang, B. Han, S. Liang, W. Wang, T. Wu, G. Yang, Green Chem. 13, 1106 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Inagaki, S. Guan, T. Ohsuna, O. Terasaki, Nature 416, 304 (2002)CrossRefGoogle Scholar
  9. 9.
    K. Wilson, A.F. Lee, D.J. Macquarie, J.H. Clark, Appl. Catal. A Gen. 228, 27 (2002)CrossRefGoogle Scholar
  10. 10.
    E. Cano-Serrano, J.M. Campos-Martin, J.L.G. Fierro, Chem. Commun. 247, 246 (2003)CrossRefGoogle Scholar
  11. 11.
    N. Koukabi, E. Kolvari, M.A. Zolfigol, A. Khazaei, B.S. Shaghasemi, B. Fasahatib, Adv. Synth. Catal. 354, 2001 (2012)CrossRefGoogle Scholar
  12. 12.
    N.G. Salunkhe, A. Chandrashekhar, N.V. Ladole Thakare, A.S. Aswar, Res. Chem. Intermed. 45, 256 (2017)Google Scholar
  13. 13.
    S.B. Kalidindi, B.R. Jagirdar, Chemsuschem 5, 65 (2012)CrossRefGoogle Scholar
  14. 14.
    M.B. Gawande, H. Guo, A.K. Rathi, P.S. Branco, Y. Chen, R.S. Varma, D.L. Peng, RSC Adv. 3, 1050 (2013)CrossRefGoogle Scholar
  15. 15.
    M.B. Gawande, A.K. Rathi, P.S. Branco, I.D. Nogueira, A. Velhinho, J.J. Shrikhande, U.U. Indulkar, R.V. Jayaram, C.A.A. Ghumman, N. Bundaleski, Chem. Eur. J. 18, 12628 (2012)CrossRefGoogle Scholar
  16. 16.
    M.B. Gawande, A. Rathi, I.D. Nogueira, C.A.A. Ghumman, N. Bundaleski, O.M.N.D. Teodoro, P.S. Branco, ChemPlusChem 77, 865 (2012)CrossRefGoogle Scholar
  17. 17.
    L.M. Rossi, A.L. Parize, J.C. Rubim, in Green Synthesis and Applications of Magnetic Nanoparticles- Handbook of Green Chemistry, ed. by P.T. Anastas (Wiley, Weinheim, 2012), p. 61Google Scholar
  18. 18.
    G. Bystrzejewska-Piotrowska, J. Golimowski, P.L. Urban, Waste Manag. 29, 2587 (2009)CrossRefGoogle Scholar
  19. 19.
    M.B. Gawande, R. Luque, R. Zboril, ChemCatChem 6, 3312 (2014)CrossRefGoogle Scholar
  20. 20.
    M.M. Dutta, K.K. Rajbongshi, P. Phukan, Synth. Commun. 47, 2330 (2017)CrossRefGoogle Scholar
  21. 21.
    F. Bonyasi, M. Hekmati, H. Veisi, J. Colloid Interface Sci. 496, 177 (2017)CrossRefGoogle Scholar
  22. 22.
    H.D. Nguyen, M.H.T. Nguyen, T.D. Nguyen, P.T. Nguyena, Environ. Prog. Sustain. Energy 35, 603 (2016)CrossRefGoogle Scholar
  23. 23.
    N.G. Salunkhe, C.A. Ladolel, N.V. Thakare, A.S. Aswar, Res. Chem. Intermed. 44, 355 (2017)CrossRefGoogle Scholar
  24. 24.
    M.N. Chen, L.P. Mo, Z.S. Cui, Z.H. Zhang, Curr. Opin. Green Sustain. Chem. 15, 27 (2019)CrossRefGoogle Scholar
  25. 25.
    M. Zhang, P. Liu, Y. Liu, Z.R. Shang, H.C. Hu, Z.H. Zhang, RSC Adv. 6, 106160 (2016)CrossRefGoogle Scholar
  26. 26.
    M. Zhang, Y.H. Liua, Z.R. Shang, H.C. Hu, Z.H. Zhang, Catal. Commun. 88, 39 (2017)CrossRefGoogle Scholar
  27. 27.
    V. Polshettiwar, R.S. Varma, Green Chem. 12, 743 (2010)CrossRefGoogle Scholar
  28. 28.
    M.B. Gawande, P.S. Branco, R.S. Varma, Chem. Soc. Rev. 42, 3371 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Bagheri, N.M.J. Julkapli, Magn. Magn. Mater. 416, 117 (2016)CrossRefGoogle Scholar
  30. 30.
    R. Mrówczyński, A. Nan, J. Liebscher, Rsc Adv. 4, 5927 (2014)CrossRefGoogle Scholar
  31. 31.
    R.B.N. Baig, R.S. Verma, Chem. Commun. 49, 752 (2013)CrossRefGoogle Scholar
  32. 32.
    L.M. Rossi, N.J.S. Costa, F.P. Silva, R. Wojcieszak, Green Chem. 16, 2906 (2014)CrossRefGoogle Scholar
  33. 33.
    R. Hudson, Y. Feng, R.S. Verma, A. Moores, Green Chem. 16, 4493 (2014)CrossRefGoogle Scholar
  34. 34.
    T. Cheng, D. Zhang, H. Li, G. Liu, Green Chem. 16, 3401 (2014)CrossRefGoogle Scholar
  35. 35.
    R.K. Sharma, S. Dutta, S. Sharma, R. Zboril, R.S. Varma, M.B. Gawande, Green Chem. 18, 3184 (2016)CrossRefGoogle Scholar
  36. 36.
    M. Kooti, M.F. Afshari, Sci. Iran. 19, 1991 (2012)CrossRefGoogle Scholar
  37. 37.
    J. Chen, Z.-H. Lu, Y. Wang, X. Chen, L. Zhang, Int. J Hydrog. Energy 40, 4777 (2015)CrossRefGoogle Scholar
  38. 38.
    M. Zhang, J. Lu, J.-N. Zhang, Z.-H. Zhang, Catal. Commun. 78, 26 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Mandal, S. Hazra, S. Sarkar, C. Bodhak, A. Pramanik, Appl. Organomet. Chem. 33, 1 (2019)CrossRefGoogle Scholar
  40. 40.
    A. Rezaei, A. Ramazani, F. Gouranlou, S. Woo Joo, Lett. Org. Chem. 114, 86 (2017)CrossRefGoogle Scholar
  41. 41.
    H. Ahankar, A. Ramazani, K. Ślepokura, T. Lis, S. Woo Joo, Green Chem. 18, 3582 (2016)CrossRefGoogle Scholar
  42. 42.
    A.M. Malekzadeh, A. Ramazani, S.J.T. Rezaei, H. Niknejad, J. Colloid Interface Sci. 490, 64 (2017)CrossRefGoogle Scholar
  43. 43.
    H. Ramadoss, D. Saravanan, S.P.N. Sudhan, S. Sheik Mansoor, Der Pharm. Lett. 8, 25 (2016)Google Scholar
  44. 44.
    Z. Hosseinzadeh, A. Ramazani, H. Ahankar, K. Ślepokura, T. Lis, Silicon 11, 45 (2018)Google Scholar
  45. 45.
    M. Zhang, Q.Y. Fu, G. Gao, H.Y. He, Y. Zhang, Y.S. Wu, Z.H. Zhang, ACS Sustain. Chem. Eng. 5, 6175 (2017)CrossRefGoogle Scholar
  46. 46.
    T.L. Pavlovska, R.G. Redkin, V.V. Lipson, D.V. Atamanuk, Mol. Divers. 20, 299 (2016)CrossRefGoogle Scholar
  47. 47.
    J. Saffari, D. Ghanbari, N. Mir, K. Khandan-Barani, J. Ind. Eng. Chem. 20, 4119 (2014)CrossRefGoogle Scholar
  48. 48.
    E. Rafiee, N. Rahpeyma, Chin. J. Catal. 36, 1342 (2015)CrossRefGoogle Scholar
  49. 49.
    U. Kurtan, M. Amir, A. Yıldız, A. Baykal, Appl. Surf. Sci. 376, 16 (2016)CrossRefGoogle Scholar
  50. 50.
    M. Runowski, S. Lis, J. Lumin. 170, 484 (2016)CrossRefGoogle Scholar
  51. 51.
    M. Demirelli, E. Karaoğlu, A. Baykal, H. Sözeri, E. Uysal, J. Alloy. Compd. 582, 201 (2014)CrossRefGoogle Scholar
  52. 52.
    M. Amir, A.D. Korkmaz, A. Baykal, M. Geleri, H. Sözeri, H. Güngüneş, M. Sertkol, S.E. Shirsath, J. Inorg. Organomet. Polym. 27, 1740 (2017)CrossRefGoogle Scholar
  53. 53.
    C. Cannas, A. Musinu, A. Ardu, F. Orrù, D. Peddis, M. Casu, R. Sanna, F. Angius, G. Diaz, G. Piccaluga, Chem. Mater. 22, 3353 (2010)CrossRefGoogle Scholar
  54. 54.
    T. Dippong, O. Cadar, E.A. Levei, I. Bibicu, L. Diamandescu, C. Leostean, M. Lazar, G. Borodi, L.B. Tudorand, Ceram. Int. 43, 2113 (2017)CrossRefGoogle Scholar
  55. 55.
    L.M. Wang, N. Jiao, J. Qiu, J.J. Yu, J.Q. Liu, F.L. Guo, Y. Liu, Tetrahedron 66, 339 (2010)CrossRefGoogle Scholar
  56. 56.
    S.L. Zhu, S.J. Ji, Y. Zhang, Tetrahedron 63, 9365 (2007)CrossRefGoogle Scholar
  57. 57.
    R. Sridhar, B. Srinivas, B. Madhav, V.P. Reddy, Y.V.D. Nageswar, K.R. Rao, Can. J. Chem. 87, 1704 (2009)CrossRefGoogle Scholar
  58. 58.
    V.Y. Mortikov, Y.M. Litvinov, A.A. Shestopalov, L.A. Rodinovskaya, A.M. Shestopalov, Russ. Chem. Bull. 57, 2373 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Bardia Zamani-Ranjbar-Garmroodi
    • 1
  • Mohammad A. Nasseri
    • 1
    Email author
  • Ali Allahresani
    • 1
  • Kaveh Hemmat
    • 1
  1. 1.Department of Chemistry, College of SciencesUniversity of BirjandBirjandIran

Personalised recommendations