Ultraviolet light induced oxygen vacancy-rich BiPO4−x/Bi2S3 nanorods with enhanced photocatalytic activity and mechanism

  • Jiarui JinEmail author
  • Yun Xie


The vacancy defects of different elements generated in nanocrystals play a very important role in the photocatalytic reduction reactions. In this study, novel oxygen vacancy-rich BiPO4−x/B2S3 heterostructure nanorods (OV-BPO/BS) are successfully prepared by introducing UV light irradiation. Subsequently, a variety of characteristic data, including ESR, XPS and HRTEM unveil the formation of heterojunction and oxygen vacancies. Further, density functional calculations reveal that the newly formed oxygen vacancies bring a defect level, which results in the enhanced photocatalytic activity. The photocatalytic reduction results of MB degradation indicate that the oxygen vacancies contribute to the faster separation of photo-generated charge carriers. The co-existence of the heterostructure and induced oxygen vacancies exhibit an improved photoreduction efficiency. Through adjusting the ratio of S and P, we further obtain BiPO4/B2S3 (denotes as BPO/BS in this paper), 50% BiPO4/B2S3 (denotes as 50% BPO/BS in this paper), and 25% BiPO4/B2S3 (denotes as 25% BPO/BS in this paper). After UV light irradiation, different vacancies types can be introduced into BPO/BS. The photocatalytic mechanism of these materials reveals that the synergistic effect between heterojunction and vacancies greatly promotes the photoinduced carriers separation efficiency, which is tested by electrochemical impedance spectroscopy and photocurrent response. This study brings a new method to rational design of new photocatalysts and a new perspective to study the relationship between the nanocrystal defects and their properties.


Oxygen vacancy Heterostructure nanorods Photocatalysis 



  1. 1.
    P. Zhang, J. Zhang, J. Gong, Chem. Soc. Rev. 43(13), 4395 (2014)CrossRefGoogle Scholar
  2. 2.
    L. Lin, H. Ou, Y. Zhang, X. Wang, ACS Catal. 6(6), 3921 (2016)CrossRefGoogle Scholar
  3. 3.
    G. Zhang, Z.A. Lan, X. Wang, Angew. Chem. Int. Ed. 55(51), 15712 (2016)CrossRefGoogle Scholar
  4. 4.
    K. J. McDonald and K-S. Choi. Energy Environ. Sci. 5(9), 8553 (2012)Google Scholar
  5. 5.
    Y. Yu, A. Kudo, Adv. Funct. Mater. 16, 2163 (2006)CrossRefGoogle Scholar
  6. 6.
    P. Hermet, Comput. Mater. Sci. 118, 1 (2016)CrossRefGoogle Scholar
  7. 7.
    H. Li, J. Shang, Z. Ai, L. Zhang, JACS 137, 6393 (2015)CrossRefGoogle Scholar
  8. 8.
    J. Jiang, L. Zhang, H. Li, W. He, J.J. Yin, Nanoscale 5, 10573 (2013)CrossRefGoogle Scholar
  9. 9.
    X. Hu, J. Tian, Y. Xue, Y. Li, H. Cui, Chem. Cal. Chem. 9, 1511 (2017)Google Scholar
  10. 10.
    Z. Wan, G. Zhang, X. Wu, S. Yin, Appl. Catal. B Environ. 207, 17 (2017)CrossRefGoogle Scholar
  11. 11.
    L. Ye, J. Liu, Z. Jiang, T. Peng, L. Zan, Appl. Catal. B Environ. 142, 1 (2013)Google Scholar
  12. 12.
    F. Wang, W. Li, S. Gu, H. Li, X. Wu, C. Ren, X. Liu, J. Photochem. Photobiol. A 335, 140 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Ding, Z. Dai, F. Qin, H. Zhao, S. Zhao, R. Chen, Appl. Catal. B Environ. 205, 281 (2017)CrossRefGoogle Scholar
  14. 14.
    C.S. Pan, Y.F. Zhu, Environ. Sci. Technol. 44, 5570 (2010)CrossRefGoogle Scholar
  15. 15.
    Y.Y. Zhu, Y.F. Liu, Y.H. Lv, H. Wang, Q. Ling, Y.F. Zhu, Acta Phys. Chim. Sin. 29, 576 (2013)Google Scholar
  16. 16.
    L.W. Zhang, Y.F. Zhu, Catal. Sci. Technol. 2, 694 (2012)CrossRefGoogle Scholar
  17. 17.
    C.S. Pan, Y.F. Zhu, J. Mater. Chem. 21, 4235 (2011)CrossRefGoogle Scholar
  18. 18.
    P.M. Rao, L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weisse, P. Yang, X. Zheng, Nano Lett. 14(2), 1099 (2014)CrossRefGoogle Scholar
  19. 19.
    R. Shi, H.F. Ye, F. Liang, Z. Wang, K. Li, Y. Weng, Z. Lin, W.F. Fu, C.M. Che, Y. Chen, Adv. Mater. 30(6), 1705941 (2018)CrossRefGoogle Scholar
  20. 20.
    W. Bi, X. Li, L. Zhang, T. Jin, L. Zhang, Q. Zhang, Y. Luo, C. Wu, Y. Xie, Nat. Commun. 6, 8647 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Yu, L. Qi, M. Jaroniec, J. Phys. Chem. C 114(30), 13118 (2010)CrossRefGoogle Scholar
  22. 22.
    G. Konstantatos, L. Levina, J. Tang, E.H. Sargent, Nano Lett. 8, 4002 (2008)CrossRefGoogle Scholar
  23. 23.
    T. Wu, X. Zhou, H. Zhang, X. Zhong, Nano Res. 3, 379 (2010)CrossRefGoogle Scholar
  24. 24.
    Y.J. Wang, J.R. Jin, W.G. Chu, D. Cahen, T. He, ACS. Appl. Mater. Inter. 10, 15304 (2018)CrossRefGoogle Scholar
  25. 25.
    Y.H. Lv, Y.Y. Zhu, Y.F. Zhu, J. Phys. Chem. C 117, 18520 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Nowotny, T. Bak, T. Burg, Ionics 13, 79 (2007)CrossRefGoogle Scholar
  27. 27.
    J. Nowotny, M.A. Alim, T. Bak, M.A. Idris, M. Ionescu, K. Prince, M.Z. Sahadan, K. Sopian, M.A.M. Teridi, W. Sigmund, Chem. Soc. Rev. 44, 8424 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Nowotny, T. Bak, J. Nowotny, J. Phys. Chem. B 110, 16302 (2006)CrossRefGoogle Scholar
  29. 29.
    J. Xing, I. Zhang, B. Tian, Chem. Commun. 47, 4947 (2011)CrossRefGoogle Scholar
  30. 30.
    M.V.J. Ganduglia-Pirovano, L.F. Da Silva, J. Sauer, Phys. Rev. Lett. 102, 26101 (2009)CrossRefGoogle Scholar
  31. 31.
    K.X. Wang, C.L. Shao, X.H. Li, X. Zhang, N. Lu, F.J. Miao, Y.C. Liu, Catal. Commun. 67, 6 (2015)CrossRefGoogle Scholar
  32. 32.
    D.M. Chen, Z. Kuang, Q. Zhu, Y. Du, H.L. Zhu, Mater. Res. Bull. 66, 262 (2015)CrossRefGoogle Scholar
  33. 33.
    C. Feng, Y. Wang, J. Zhang, L. Yu, D. Li, J. Yang, Z. Zhang, Appl. Catal. B Environ. 113, 61 (2012)CrossRefGoogle Scholar
  34. 34.
    F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, J. Am. Chem. Soc. 132, 11856 (2010)CrossRefGoogle Scholar
  35. 35.
    K. Natarajan, H.C. Bajaj, R.J. Tayade, J. Ind. Eng. Chem. 34, 146 (2016)CrossRefGoogle Scholar
  36. 36.
    K. Natarajan, H.C. Bajaj, R.J. Tayade, J. Nanosci. Nanotechnol. 19(8), 5100 (2019)CrossRefGoogle Scholar
  37. 37.
    Y. Xu, M.A.A. Schoonen, Am. Mineral. 85, 543 (2000)CrossRefGoogle Scholar
  38. 38.
    X.Z. Li, F.B. Li, C.L. Yang, W.K. Ge, J. Photochem. Photobiol. A 141, 209 (2001)CrossRefGoogle Scholar
  39. 39.
    X.Y. Li, Y.H. Pi, Q.B. Xia, Z. Li, J. Xiao, Appl. Catal. B Environ. 191, 192 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Nano Functional Materials Laboratory, Glorious Sun Guangdong School of FashionHuizhou UniversityHuizhouChina

Personalised recommendations