Advertisement

Modification of doped strontium hexaferrite by MWCNT and PANI for photocatalytic degradation of methylene blue dye

  • Shadi Ghezelbash
  • Mohammad YousefiEmail author
  • Moayad Hossaini Sadr
  • Saeid Baghshahi
Article
  • 10 Downloads

Abstract

Nanoparticles of doped strontium hexaferrite (SrZn0.1Co0.1Sn0.2Fe11.6O19) were synthesized by the sol–gel auto-combustion method as a salient magnetic photocatalyst. For enhancing photocatalytic properties, a nanocomposite of the SrZn0.1Co0.1Sn0.2Fe11.6O19/multiwall carbon nanotube (MWCNT) and SrZn0.1Co0.1Sn0.2Fe11.6O19/polyaniline (PANI) was prepared. Fourier transform infrared spectra confirmed the formation of tetrahedral and octahedral vibrating modes of the Fe–O on the hexaferrite structure. In x-ray diffraction (XRD) patterns of SrZn0.1Co0.1Sn0.2Fe11.6O19/MWCNT, both the MWCNT’s peak at 2θ = 26.4° and hexaferrite pattern confirmed the formation of the nanocomposite. XRD analysis of SrZn0.1Co0.1Sn0.2Fe11.6O19/PANI nanocomposite represented the amorphous peak belonging to PANI. Field emission scanning electron microscopy pictures of SrZn0.1Co0.1Sn0.2Fe11.6O19/MWCNT showed nanoparticles of hexaferrite on the surface of the MWCNT’s nanofibers. In the SrZn0.1Co0.1Sn0.2Fe11.6O19/PANI nanocomposite, the spherical PANI encompassed the hexaferrite structure. Vibrating sample magnetometer hysteresis loops revealed that the SrZn0.1Co0.1Sn0.2Fe11.6O19 can be classified as a soft magnetic material. By adding non-magnetic particles of MWCNTs and PANI, the saturation magnetizations of all nanocomposites decreased. Photocatalytic studies showed that by adding PANI as a conducting polymer and MWCNTs with a high surface area, the mechanism of dye degradation was accelerated in comparison to the pure SrZn0.1Co0.1Sn0.2Fe11.6O19 nanoparticles. The kinetics, rate and mechanism of photodegradation were studied for all samples. By fabricating PANI nanocomposites, the remarkable transfer of charge carriers facilitated the methylene blue decomposing process. On the other hand, due to the high surface area of MWCNTs and decreasing the electron–hole accumulation, the degradation process was enhanced.

Keywords

Hexaferrites Multi-wall carbon nanotube Methylene blue dye Photocatalytic properties 

Notes

References

  1. 1.
    M. Taghvay Nakhjiri, G. Bagheri Marandi, M. Kurdtabar, Polym. Environ. 27, 581 (2019)CrossRefGoogle Scholar
  2. 2.
    Y. Chen, L. Wang, W. Wang, M. Cao, Appl. Catal. B: Environ. 209, 1 (2017)CrossRefGoogle Scholar
  3. 3.
    X. Hong, Compos. Sci. Technol. 117, 315 (2015)CrossRefGoogle Scholar
  4. 4.
    M.N.-E. Montazerozohori, Environ. Prot. Eng. 38, 45 (2012)Google Scholar
  5. 5.
    W. Fu, H. Yang, M. Li, N. Yang, G. Zou, Mater. Lett. 59, 3530 (2005)CrossRefGoogle Scholar
  6. 6.
    F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Appl. Catal. A 359, 25 (2009)CrossRefGoogle Scholar
  7. 7.
    H.Y. He, W.X. Dong, G.H. Zhang, Res. Chem. Intermed. 36, 995 (2010)CrossRefGoogle Scholar
  8. 8.
    K. Byrappa, A.S. Dayananda, C.P. Sajan, B. Basavalingu, M.B. Shayan, K. Soga, Mater. Sci. 43, 2348 (2008)CrossRefGoogle Scholar
  9. 9.
    R.C. Pullar, Prog. Mater. Sci. 57, 1191 (2012)CrossRefGoogle Scholar
  10. 10.
    A. Awadallah, S. Mahmood, Y. Maswadeh, Mater. Chem 74, 192 (2016)Google Scholar
  11. 11.
    A. Gemeay, R. Elsharkawy, E. Aboelfetoh, Polym. Environ 26, 655 (2017)CrossRefGoogle Scholar
  12. 12.
    K. Balasubramanian, Carbon Nanotub. 1, 180 (2005)Google Scholar
  13. 13.
    W. Li, T. Tian, Chem. Eng. 303, 282 (2016)CrossRefGoogle Scholar
  14. 14.
    P. Kaur, S.K. Chawla, S.B. Narang, K. Pubby, Magn. Magn. Mater. 422, 304 (2017)CrossRefGoogle Scholar
  15. 15.
    C.L. Yuan, Y.C. Hong, C.H. Lin, Magn. Magn. Mater. 323, 1851 (2011)CrossRefGoogle Scholar
  16. 16.
    C.L. Yuan, Y.S. Hong, Mater. Sci. 45, 3470 (2010)CrossRefGoogle Scholar
  17. 17.
    H. Nikmanesh, M. Moradi, G.H. Bordbar, R.S. Alam, Ceram. Int. 42, 14342 (2016)CrossRefGoogle Scholar
  18. 18.
    K. Bobzin, G. Bolelli, M. Bruehl, A. Hujanen, P. Lintunen, D. Lisjak, Eur. Ceram. Soc. 31, 1439 (2011)CrossRefGoogle Scholar
  19. 19.
    Z. Zhang, Magn. Magn. Mater. 324, 2177 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Bibi, S.M. Abbas, N. Ahmad, B. Muhammad, Z. Iqbal, U.A. Rana, Compos. B Eng. 114, 139 (2017)CrossRefGoogle Scholar
  21. 21.
    A. Tadjarodi, Alloy. Compd. 554, 284 (2013)CrossRefGoogle Scholar
  22. 22.
    L. Li, J. Jiang, F. Xu, Mater. Lett. 61, 1091 (2007)CrossRefGoogle Scholar
  23. 23.
    A. Ghasemi, IEEE Trans. Magn. 47, 459 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Rostami, M. Moradi, R.S. Alam, R. Mardani, Mater. Res. Bull. 83, 379 (2016)CrossRefGoogle Scholar
  25. 25.
    S.K. Chawla, R.K. Mudsainiyan, S.S. Meena, S.M. Yusuf, Magn. Magn. Mater. 350, 23 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Ghezelbash, M. Yousefi, M. Hossainisadr, S. Baghshhi, IEEE. Trans. Magn. 54, 1 (2018)CrossRefGoogle Scholar
  27. 27.
    M. Pasquale, IEEE. Trans. Magn. 43, 2636 (2007)CrossRefGoogle Scholar
  28. 28.
    A. Ghasemi, Magn. Magn. Mater. 323, 3133 (2011)CrossRefGoogle Scholar
  29. 29.
    K. Roshanaei, Mater. Sci. Mater. Electron. 28, 4537 (2016)CrossRefGoogle Scholar
  30. 30.
    K. Mohammadi, M. Sadeghi, R. Azimirad, M. Ebrahimi, Mater. Sci. Mater. Electron. 28, 9983 (2017)CrossRefGoogle Scholar
  31. 31.
    M. Sundararajan, V. Sailaja, L. John Kennedy, J. Vijaya, Ceram. Int. 43, 540 (2017)CrossRefGoogle Scholar
  32. 32.
    A. Kusior, K. Michalec, P. Jelen, M. Radecka, Appl. Surf. Sci. 476, 1 (2019)CrossRefGoogle Scholar
  33. 33.
    O. Mohanta, Y. Singhbabu, S. Giri, D. Dadhich, N. Das, R.K. Sahu, Alloys Compd. 564, 78 (2013)CrossRefGoogle Scholar
  34. 34.
    L. Wang, A.C.S. Appl, Mater. Interfaces 10, 41855 (2018)CrossRefGoogle Scholar
  35. 35.
    P. Xiong, Q. Chen, M. He, X. Sun, X. Wang, Mater. Chem. 22(34), 17485 (2012)CrossRefGoogle Scholar
  36. 36.
    H. Zhang, Environ. Sci. Technol. 42, 3803 (2008)CrossRefGoogle Scholar
  37. 37.
    M. Mahdiani, A. Sobhani, M. Salavati-Niasari, Sep. Purif. Technol. 185, 140 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Shadi Ghezelbash
    • 1
  • Mohammad Yousefi
    • 2
    Email author
  • Moayad Hossaini Sadr
    • 3
  • Saeid Baghshahi
    • 4
  1. 1.Department of Chemistry, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Chemistry, College of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahr-e-ReyIslamic Azad UniversityTehranIran
  3. 3.Department of Chemistry, Faculty of ScienceAzarbaijan Shahid Madani UniversityTabrizIran
  4. 4.Department of Materials Science and EngineeringImam Khomeini International UniversityQazvinIran

Personalised recommendations