Advertisement

Mechanism of persulfate activation with CuO for removing cephalexin and ofloxacin in water

  • Wenqing Li
  • Yinsu Wu
  • Yuanzhe Gao
  • Shengtao XingEmail author
Article
  • 18 Downloads

Abstract

CuO was synthesized by a simple hydrothermal method and investigated as a heterogeneous activator of persulfate for the degradation of cephalexin and ofloxacin. X-ray photo-electron spectroscopy and hydrogen temperature-programmed reduction measurements reveal that CuO contains two types of Cu2+: one has more electron deficiency (named as Cu2+-h) and the other has relatively higher electron density (named as Cu2+-l). Electron paramagnetic resonance and radical scavenging experiments demonstrate that ·SO4 and ·O2 are responsible for the efficient degradation of cephalexin and ofloxacin, respectively. ·SO4 can be produced through the electron transfer from Cu2+-l to PS and the cleavage of peroxy bond, while ·O2 can be produced via the electron transfer from PS to Cu2+-h and the cleavage of S–O bond. Finally, the degradation intermediates were identified by liquid chromatograph–mass spectrometry. This study proposed a novel mechanism for the activation of persulfate with CuO, which is useful for the rational design of persulfate activator for controlling the production of active species.

Keywords

CuO Persulfate activation Active site Reactive species Pharmaceuticals Degradation 

Notes

Acknowledgements

This work was supported by the Foundation for Distinguished Young Scientists of Hebei Province (No. B2018205153), and the Natural Science Foundation of Hebei Education Department (No. ZD2015114).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    K. Kümmerer, Chemosphere 75, 435 (2009)CrossRefGoogle Scholar
  2. 2.
    S. Jiao, S. Zheng, D. Yin, L. Wang, L. Chen, Chemosphere 73, 377 (2008)CrossRefGoogle Scholar
  3. 3.
    L.W. Matzek, K.E. Carter, Chemosphere 151, 178 (2016)CrossRefGoogle Scholar
  4. 4.
    P. Xie, J. Ma, W. Liu, J. Zou, S. Yue, X. Li, M.R. Wiesner, J. Fang, Water Res. 69, 223 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Ji, Y. Shi, W. Dong, X. Wen, M. Jiang, J. Lu, Chem. Eng. J. 298, 225 (2016)CrossRefGoogle Scholar
  6. 6.
    M. Ahmadi, F. Ghanbari, Environ. Sci. Pollut. Res. 23, 19350 (2016)CrossRefGoogle Scholar
  7. 7.
    S. Ahn, T.D. Peterson, J. Righter, D.M. Miles, P.G. Tratnyek, Environ. Sci. Technol. 47, 11717 (2013)CrossRefGoogle Scholar
  8. 8.
    C.S. Liu, K. Shih, C.X. Sun, F. Wang, Sci. Total Environ. 416, 507 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Jawad, J. Lang, Z. Liao, A. Khan, J. Ifthikar, Z. Lv, S. Long, Z. Chen, Z. Chen, Chem. Eng. J. 335, 548 (2018)CrossRefGoogle Scholar
  10. 10.
    Y. Liu, H. Guo, Y. Zhang, X. Cheng, P. Zhou, G. Zhang, J. Wang, P. Tang, T. Ke, W. Li, Sep. Purif. Technol. 192, 88 (2018)CrossRefGoogle Scholar
  11. 11.
    Y. Lei, H. Zhang, J. Wang, J. Ai, Chem. Eng. J. 270, 73 (2015)CrossRefGoogle Scholar
  12. 12.
    Y. Lei, C.S. Chen, Y.J. Tu, Y.H. Huang, H. Zhang, Environ. Sci. Technol. 49, 6838 (2015)CrossRefGoogle Scholar
  13. 13.
    Y. Li, L. Guo, D. Huang, A. Jawad, Z. Chen, J. Yang, W. Liu, Y. Shen, M. Wang, G. Yin, J. Hazard. Mater. 328, 56 (2017)CrossRefGoogle Scholar
  14. 14.
    D. Ouyang, J. Yan, L. Qian, Y. Chen, L. Han, A. Su, W. Zhang, H. Ni, M. Chen, Chemosphere 184, 609 (2017)CrossRefGoogle Scholar
  15. 15.
    X. Tian, P. Gao, Y. Nie, C. Yang, Z. Zhou, Y. Li, Y. Wang, Chem. Comm. 53, 6589 (2017)CrossRefGoogle Scholar
  16. 16.
    C. Wang, J. Wan, Y. Ma, Y. Wang, Res. Chem. Intermed. 42, 481 (2016)CrossRefGoogle Scholar
  17. 17.
    G.D. Fang, D.D. Dionysiou, S.R. Al-Abed, D.M. Zhou, Appl. Catal. B 129, 325 (2013)CrossRefGoogle Scholar
  18. 18.
    Q. Wang, B. Wang, Y. Ma, S. Xing, Chem. Eng. J. 354, 473 (2018)CrossRefGoogle Scholar
  19. 19.
    X. Du, Y. Zhang, I. Hussain, S. Huang, W. Huang, Chem. Eng. J. 313, 1023 (2017)CrossRefGoogle Scholar
  20. 20.
    X. Du, Y. Zhang, F. Si, C. Yao, M. Du, I. Hussain, H. Kim, S. Huang, Z. Lin, W. Hayat, Chem. Eng. J. 356, 178 (2019)CrossRefGoogle Scholar
  21. 21.
    T. Ghodselahi, M.A. Vesaghi, A. Shafiekhani, A. Baghizadeh, M. Lameii, Appl. Surf. Sci. 255, 2730 (2008)CrossRefGoogle Scholar
  22. 22.
    A. Ghauch, G. Ayoub, S. Naim, Chem. Eng. J. 228, 1168 (2013)CrossRefGoogle Scholar
  23. 23.
    Y.F. Rao, L. Qu, H. Yang, W. Chu, J. Hazard. Mater. 268, 23 (2014)CrossRefGoogle Scholar
  24. 24.
    C. Liang, H.W. Su, Ind. Eng. Chem. Res. 48, 5558 (2009)CrossRefGoogle Scholar
  25. 25.
    S. Maeno, Q. Zhu, M. Sasaki, T. Miyamoto, M. Fukushima, J. Mol. Catal. A 400, 56 (2015)CrossRefGoogle Scholar
  26. 26.
    S.V. Verstraeten, S. Lucangioli, M. Galleano, Inorg. Chim. Acta 362, 2305 (2009)CrossRefGoogle Scholar
  27. 27.
    N. Li, Y. Tian, J. Zhao, J. Zhang, W. Zuo, L. Kong, H. Cui, Chem. Eng. J. 352, 412 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Chemistry and Material ScienceHebei Normal UniversityShijiazhuangChina

Personalised recommendations