Advertisement

Magnetic cobalt ferrite nanoparticles functionalized with citric acid as a green nanocatalyst for one-pot three-component sonochemical synthesis of substituted 3-pyrrolin-2-ones

  • Hamideh Ahankar
  • Ali RamazaniEmail author
  • Katarzyna Ślepokura
  • Tadeusz Lis
  • Vasyl Kinzhybalo
Article
  • 17 Downloads

Abstract

A clean, convenient and facile approach for one-pot ultrasonic assisted synthesis of substituted 3-pyrrolin-2-ones from diethyl acetylenedicarboxylate, aniline and aldehyde derivatives is described. The reactions were carried out in the presence of an efficient, green and reusable acidic nanocatalyst, magnetic cobalt ferrite nanoparticles functionalized with citric acid (CoFe2O4@CA), with high yields under mild conditions. Also, use of ultrasound irradiation made this approach an attractive protocol for the synthesis of these products. The method has been successful in achieving the green chemistry objective. An energy efficient protocol using ultrasound irradiation instead of conventional heating or stirring and use of ethanol as a non-hazardous, inexpensive and green solvent in the one-step reaction against sequential reaction steps thus combining the features of both economic and environmental advantages.

Graphic abstract

In this research, magnetic cobalt ferrite nanoparticles functionalized with citric acid (CoFe2O4@CA) catalyzed synthesis of substituted 3-pyrrolin-2-ones under ultrasonic irradiation via a practical and environmentally benign one-pot three-component protocol.

Keywords

Ultrasonic irradiation Acidic nanocatalyst Magnetic cobalt ferrite 3-Pyrrolin-2-ones 

Notes

Acknowledgements

This work was supported by the “Iran National Science Foundation”.

Supplementary material

11164_2019_3878_MOESM1_ESM.docx (26.1 mb)
Supplementary material 1 (DOCX 26680 kb)

References

  1. 1.
    R.C. Cioc, E. Ruijter, R.V. Orru, Green Chem. 16, 6 (2014)CrossRefGoogle Scholar
  2. 2.
    H. Zhang, Catal. Lett. 144, 5 (2014)Google Scholar
  3. 3.
    L.F. Gutierrez, E. Nope, H.A. Rojas, J.A. Cubillos, A.G. Sathicq, G.P. Romanelli, J.J. Martínez, Res. Chem. Intermed. 44, 5559–5568 (2018)CrossRefGoogle Scholar
  4. 4.
    C. Capello, U. Fischer, K. Hungerbühler, Green Chem. 9, 9 (2007)CrossRefGoogle Scholar
  5. 5.
    H. Ahankar, A. Ramazani, K. Ślepokura, T. Lis, S.W. Joo, Green Chem. 18, 12 (2016)CrossRefGoogle Scholar
  6. 6.
    D. Wang, D. Astruc, Chem. Rev. 114, 14 (2014)Google Scholar
  7. 7.
    M.B. Gawande, R. Luque, R. Zboril, ChemCatChem 6, 12 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Ahankar, A. Ramazani, S.W. Joo, Res. Chem. Intermed. 42, 3 (2016)CrossRefGoogle Scholar
  9. 9.
    J.J. Martínez, E. Nope, H. Rojas, J. Cubillos, Á.G. Sathicq, G.P. Romanelli, Catal. Lett. 144, 7 (2014)CrossRefGoogle Scholar
  10. 10.
    S. Zolfagharinia, E. Kolvari, N. Koukabi, Catal. Lett. 147, 6 (2017)CrossRefGoogle Scholar
  11. 11.
    J.K. Rajput, G. Kaur, Catal. Sci. Technol. 4, 1 (2014)CrossRefGoogle Scholar
  12. 12.
    K.K. Senapati, C. Borgohain, P. Phukan, J. Mol. Catal. A Chem. 339, 1 (2011)CrossRefGoogle Scholar
  13. 13.
    A. Bazgir, G. Hosseini, R. Ghahremanzadeh, ACS Comb. Sci. 15, 10 (2013)CrossRefGoogle Scholar
  14. 14.
    L.H. Abdel Rahman, A.M. Abu-Dief, R.M. El-Khatib, S.M. Abdel-Fatah, A. Adam, E. Ibrahim, Appl. Organomet. Chem. 32, 3 (2018)Google Scholar
  15. 15.
    F. Sadri, A. Ramazani, A. Massoudi, M. Khoobi, R. Tarasi, A. Shafiee, V. Azizkhani, L. Dolatyari, S.W. Joo, Green Chem. Lett. Rev. 7, 3 (2014)CrossRefGoogle Scholar
  16. 16.
    M. Kooti, M. Afshari, Catal. Lett. 142, 3 (2012)CrossRefGoogle Scholar
  17. 17.
    S.Y. Srinivasan, K.M. Paknikar, D. Bodas, V. Gajbhiye, Nanomedicine 13, 1221–1238 (2018)CrossRefGoogle Scholar
  18. 18.
    G. Baldi, D. Bonacchi, M.C. Franchini, D. Gentili, G. Lorenzi, A. Ricci, C. Ravagli, Langmuir 23, 7 (2007)CrossRefGoogle Scholar
  19. 19.
    R.A. Bohara, N.D. Thorat, H.M. Yadav, S.H. Pawar, N. J. Chem. 38, 7 (2014)CrossRefGoogle Scholar
  20. 20.
    A. Meyers, L. Snyder, J. Org. Chem. 58, 1 (1993)CrossRefGoogle Scholar
  21. 21.
    A.G. Malykh, M.R. Sadaie, Drugs 70, 3 (2010)CrossRefGoogle Scholar
  22. 22.
    L.P. Dwoskin, L. Teng, S.T. Buxton, P.A. Crooks, J. Pharmacol. Exp. Ther. 288, 3 (1999)Google Scholar
  23. 23.
    P.N. Patsalos, Epilepsia 46, 140–148 (2005)CrossRefGoogle Scholar
  24. 24.
    P. Singh, V. Dimitriou, R. Mahajan, A. Crossley, Br. J. Anaesth. 71, 5 (1993)Google Scholar
  25. 25.
    F. Haaf, A. Sanner, F. Straub, Polym. J. 17, 1 (1985)CrossRefGoogle Scholar
  26. 26.
    R.H. Feling, G.O. Buchanan, T.J. Mincer, C.A. Kauffman, P.R. Jensen, W. Fenical, Angew. Chem. Int. Ed. 42, 3 (2003)CrossRefGoogle Scholar
  27. 27.
    S. Omura, T. Fujimoto, K. Otoguro, K. Matsuzaki, R. Moriguchi, H. Tanaka, Y. Sasaki, J. Antibiot. 44, 1 (1991)CrossRefGoogle Scholar
  28. 28.
    Y. Asami, H. Kakeya, R. Onose, A. Yoshida, H. Matsuzaki, H. Osada, Org. Lett. 4, 17 (2002)CrossRefGoogle Scholar
  29. 29.
    A.L. Harreus, R. Backes, J.O. Eichler, R. Feuerhake, C. Jäkel, U. Mahn, R. Pinkos, R. Vogelsang, Ullmann’s Encycl. Ind. Chem. 1–7 (2011)Google Scholar
  30. 30.
    K. Ma, P. Wang, W. Fu, X. Wan, L. Zhou, Y. Chu, D. Ye, Bioorg. Med. Chem. Lett. 21, 22 (2011)Google Scholar
  31. 31.
    Y. Geng, X. Wang, L. Yang, H. Sun, Y. Wang, Y. Zhao, R. She, M.-X. Wang, D.-X. Wang, J. Tang, PLoS ONE 10, 6 (2015)Google Scholar
  32. 32.
    V. Koz’minykh, N. Igidov, S. Zykova, V. Kolla, N. Shuklina, T. Odegova, Pharm. Chem. J. 36, 4 (2002)CrossRefGoogle Scholar
  33. 33.
    V. Gein, V. Mihalev, N. Kasimova, E. Voronina, M. Vakhrin, E. Babushkina, Pharm. Chem. J. 41, 4 (2007)Google Scholar
  34. 34.
    V. Gein, V. Yushkov, N. Kasimova, N. Shuklina, M.Y. Vasil’eva, M. Gubanova, Pharm. Chem. J. 39, 9 (2005)Google Scholar
  35. 35.
    V. Gein, M. Armisheva, N. Rassudikhina, M. Vakhrin, E. Voronina, Pharm. Chem. J. 45, 3 (2011)Google Scholar
  36. 36.
    CrysAlisCCD and CrysAlisRED in KM4-CCD software. Oxford Diffraction Ltd.: Yarnton, Oxfordshire, England (2010)Google Scholar
  37. 37.
    G.M. Sheldrick, Acta Crystallogr. Sect. A Found. Adv. 71, 1 (2015)CrossRefGoogle Scholar
  38. 38.
    G.M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem. 71, 1 (2015)CrossRefGoogle Scholar
  39. 39.
    K. Brandenburg, DIAMOND Version 3.2k. Crystal Impact GbR, Bonn, Germany (2014)Google Scholar
  40. 40.
    S.Y. Zhao, D.-G. Lee, C.-W. Kim, H.-G. Cha, Y.-H. Kim, Y.-S. Kang, Bull. Korean Chem. Soc. 27, 2 (2006)Google Scholar
  41. 41.
    J. Sun, Q. Wu, E.Y. Xia, C.G. Yan, Eur. J. Org. Chem. 2011, 16 (2011)Google Scholar
  42. 42.
    C.R. Groom, I.J. Bruno, M.P. Lightfoot, S.C. Ward, Acta Crystallogr. Sect. B Struct. Sci. 72, 2 (2016)CrossRefGoogle Scholar
  43. 43.
    A. Ramazani, H. Ahankar, K. Ślepokura, T. Lis, S.W. Joo, J. Struct. Chem. 60, 662–670 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Hamideh Ahankar
    • 1
  • Ali Ramazani
    • 1
    • 2
    Email author
  • Katarzyna Ślepokura
    • 3
  • Tadeusz Lis
    • 3
  • Vasyl Kinzhybalo
    • 4
  1. 1.Department of ChemistryUniversity of ZanjanZanjanIran
  2. 2.Research Institute of Modern Biological TechniquesUniversity of ZanjanZanjanIran
  3. 3.Faculty of ChemistryUniversity of WrocławWrocławPoland
  4. 4.Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWrocławPoland

Personalised recommendations