Advertisement

Acetylene black quantum dots as a bridge for few-layer g-C3N4/MoS2 nanosheet architecture: 0D–2D heterojunction as an efficient visible-light-driven photocatalyst

  • Qian Wang
  • Changzhao ChenEmail author
  • Shiwang Zhu
  • Xiao Ni
  • Zhe Li
Article
  • 18 Downloads

Abstract

Great progress has been made based on photocatalytic theory research in the past few years. There is, however, still a long way to go to popularize the application of photocatalytic materials. Here, we introduce a simple synthetic 0D–2D (D: dimensional) heterogeneous material with more efficient photocatalytic degradation. We construct acetylene black (AB) as a bridge to connect a graphitic carbon nitride (g-C3N4) nano-layer and two-dimensional MoS2 sandwich structure based on a simple hydrothermal synthesis and ultrasonic chemical loading. Loading 1% AB onto 2D g-C3N4/(x%)MoS2 not only accelerates the transfer of charge, but also reduces electron–hole recombination, which increases the photocatalytic efficiency per unit time. Studies have shown that the degradation rate of the ternary g-C3N4/AB/3.1%MoS2 catalytic materials can reach 94.29%, which is obviously higher than that of the pure g-C3N4 (80%) or MoS2 (51.74%) in degradation of methyl blue within 130 min. In this work, the ternary heterogeneous catalyst realizes the complementary characteristics between materials, broadens the photocatalytic properties and accelerates the degradation rate of pollutants, and provides a feasible solution to environmental friendliness.

Keywords

QDs/g-C3N4/MoS2 Graphitic carbon nitride Photocatalytic degradation Ternary photocatalyst 

Notes

Acknowledgements

This work is partly sponsored by the National Natural Science Foundation of China (No. 11404005).

References

  1. 1.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)CrossRefGoogle Scholar
  2. 2.
    A.L. Linsebigler, G.Q. Lu, J.T. Yates, Chem. Rev. 95, 735 (1995)CrossRefGoogle Scholar
  3. 3.
    X. Jiang, P. Wang, J.J. Zhao, J. Mater. Chem. A 3, 7750 (2015)CrossRefGoogle Scholar
  4. 4.
    H. Xia, C. Hong, B. Li, B. Zhao, Z. Lin, M. Zheng, S.V. Savilov, S.M. Aldoshin, Adv. Funct. Mater. 25, 627 (2015)CrossRefGoogle Scholar
  5. 5.
    X. Chen, C. Li, M. Gratzel, R. Kostecki, S.S. Mao, Chem. Soc. Rev. 41, 7909 (2012)CrossRefGoogle Scholar
  6. 6.
    S. Zhang, J. Li, X. Wang, Y. Huang, M. Zeng, J.J. Xu, Mater. Chem. A 3, 10119 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Shekofteh-Gohari, A. Habibi-Yangjeh, M. Abitorabi, A. Rouhi, Crit. Rev. Environ. Sci. Technol. 806, 48 (2018)Google Scholar
  8. 8.
    A. Habibi-Yangjeh, M. Mousavi, Adv. Powder Technol. 1379, 29 (2018)Google Scholar
  9. 9.
    B. Ren, W. Shen, L. Li, S. Wu, W. Wang, Appl. Surf. Sci. 711, 447 (2018)Google Scholar
  10. 10.
    X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Chem. Rev. 110, 6503 (2010)CrossRefGoogle Scholar
  11. 11.
    D.H. Wang, L. Wang, A.W. Xu, Nanoscale 4, 2046 (2012)CrossRefGoogle Scholar
  12. 12.
    P. Niu, L. Zhang, G. Liu, H.M. Cheng, Adv. Funct. Mater. 22, 4763 (2012)CrossRefGoogle Scholar
  13. 13.
    J. Hao, G. Song, T. Liu, X. Yi, K. Yang, L. Cheng, Z. Liu, Adv. Sci. 4, 1600160 (2017)CrossRefGoogle Scholar
  14. 14.
    M.A. Bissett, S.D. Worrall, I.A. Kinloch, R.A.W. Dryfe, Electrochim. Acta 201, 30 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, P.M. Ajayan, Adv. Mater. 25, 2452 (2013)CrossRefGoogle Scholar
  16. 16.
    P.K. Kannan, D.J. Late, H. Morgan, C.S. Rout, Nanoscale 7, 13293 (2015)CrossRefGoogle Scholar
  17. 17.
    C. Tan, H. Zhang, Chem. Soc. Rev. 44, 2713 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, M. Abedi, Sep. Purif. Technol. 64, 199 (2018)Google Scholar
  19. 19.
    S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, K. Nakata, J. Photochem. Photobiol. A 161, 374 (2019)Google Scholar
  20. 20.
    H.L. Wang, L.S. Zhang, Z.G. Chen, J.Q. Hu, S.J. Li, Z.H. Wang, J.S. Liu, X.C. Wang, Chem. Soc. Rev. 43, 5234 (2014)CrossRefGoogle Scholar
  21. 21.
    B. Cheng, Y. Le, J.G. Yu, J. Hazard. Mater. 177, 971 (2010)CrossRefGoogle Scholar
  22. 22.
    D. Liu, Z. Wu, F. Tian, B. Ye, Y. Tong, J. Alloy. Compd. 676, 489 (2016)CrossRefGoogle Scholar
  23. 23.
    H.C. Liang, X.Z. Li, J. Hazard. Mater. 142, 1409 (2009)Google Scholar
  24. 24.
    Z.S. Liu, B.T. Wu, Y.B. Zhu, F. Wang, L.G. Wang, J. Colloid Interface Sci. 392, 337 (2013)CrossRefGoogle Scholar
  25. 25.
    J.G. Hou, Z. Wang, S.Q. Jiao, H.M. Zhu, CrystEngComm 14, 5923 (2012)CrossRefGoogle Scholar
  26. 26.
    F. Dong, L.W. Wu, Y.J. Sun, M. Fu, Z.B. Wu, S.C. Lee, J. Mater. Chem. 21, 15171 (2011)CrossRefGoogle Scholar
  27. 27.
    S. Asadzadeh-Khaneghah, A. Habibi-Yangjeh, D. Seifzadeh, J. Taiwan Inst. Chem. E 98, 87 (2018)Google Scholar
  28. 28.
    X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K.I. Domen, M. Antonietti, Nat. Mater. 8, 76 (2009)CrossRefGoogle Scholar
  29. 29.
    A. Habibi-Yangjeha, M. Mousavia, K. Nakatab, J. Photochem. Photobiol. A 120, 368 (2019)Google Scholar
  30. 30.
    X.C. Wang, K. Maeda, X.F. Chen, K. Takanabe, K. Domen, Y.D. Hou, X.Z. Fu, M. Antonietti, J. Am. Chem. Soc. 131, 1680 (2009)CrossRefGoogle Scholar
  31. 31.
    J. Zhang, G. Zhang, X. Chen, S. Lin, L. Möhlmann, G. Dołęga, G. Lipner, M. Antonietti, S. Blechert, X. Wang, Angew. Chem. Int. Ed. 124, 3237 (2012)CrossRefGoogle Scholar
  32. 32.
    J.S. Zhang, X.F. Chen, K. Takanabe, K. Maeda, K. Domen, J.D. Epping, X.Z. Fu, M. Antonietti, X.C. Wang, Angew. Chem. Int. Ed. 49, 441 (2010)CrossRefGoogle Scholar
  33. 33.
    A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Muller, R. Schlogl, J.M. Carlsson, J. Mater. Chem. 18, 4893 (2008)CrossRefGoogle Scholar
  34. 34.
    F. Dong, Y.J. Sun, L.W. Wu, M. Fu, Z.B. Wu, Catal. Sci. Technol. 2, 1332 (2012)CrossRefGoogle Scholar
  35. 35.
    Q. Li, J. Yang, D. Feng, Z.X. Wu, Q.L. Wu, S.S. Park, C.-S. Ha, D.Y. Zhao, Nano Res. 3, 632 (2010)CrossRefGoogle Scholar
  36. 36.
    Y. Zhang, Q. Wang, J. Lu, Q. Wang, Y. Cong, Chemosphere 162, 55 (2016)CrossRefGoogle Scholar
  37. 37.
    W.P. Zhang, X.Y. Xiao, Y. Li, X.Y. Zeng, L.L. Zheng, C.X. Wan, Appl. Surf. Sci. 389, 496 (2016)CrossRefGoogle Scholar
  38. 38.
    H.G. Yu, P. Xiao, P. Wang, J.G. Yu, Appl. Catal. B Environ. 193, 217 (2016)CrossRefGoogle Scholar
  39. 39.
    Q. Han, Z. Cheng, J. Gao, Y. Zhao, Z. Zhang, L. Dai, L. Qu, Adv. Funct. Mater. 27, 1606352 (2017)CrossRefGoogle Scholar
  40. 40.
    G.G. Zhang, M.W. Zhang, X.Q. Qiu, X.C. Wang, Adv. Mater. 26, 805 (2014)CrossRefGoogle Scholar
  41. 41.
    Y.W. Zhang, J.H. Liu, Y. Sui, W. Chen, Nanoscale 4, 5300 (2012)CrossRefGoogle Scholar
  42. 42.
    H. Zhao, Y. Dong, P. Jiang, H. Miao, G. Wang, J. Zhang, J. Mater. Chem. A 3, 7375 (2015)CrossRefGoogle Scholar
  43. 43.
    J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 72, 391 (2017)Google Scholar
  44. 44.
    Y.D. Hou, A.B. Laursen, J.S. Zhang, G.G. Zhang, Y.S. Zhu, X.C. Wang, Angew. Chem. Int. Ed. 52, 3621 (2013)CrossRefGoogle Scholar
  45. 45.
    H. McDaniel, P.E. Heil, C.L. Tsai, K. Kim, M. Shim, ACS Nano 5, 7677 (2011)CrossRefGoogle Scholar
  46. 46.
    M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, J. Mater. Sci. Mater. Electron. 1719, 29 (2018)Google Scholar
  47. 47.
    Y.Z. Cao, Q. Li, W. Wang, RSC Adv. 7, 6131 (2017)CrossRefGoogle Scholar
  48. 48.
    M. Pirhashemia, A. Habibi-Yangjeha, S.R. Pouran, J. Ind. Eng. Chem. 1, 62 (2018)Google Scholar
  49. 49.
    Y. Yan, B. Xia, X. Ge, Z. Liu, J.Y. Wang, X. Wang, ACS Appl. Mater. Interfaces 5, 12794 (2013)CrossRefGoogle Scholar
  50. 50.
    P.H. Deng, J.J. Fei, Y.L. Feng, J. Electroanal. Chem. 648, 85 (2010)CrossRefGoogle Scholar
  51. 51.
    S.C. Liao, J.Y. Shi, C.M. Ding, M.Y. Liu, F.Q. Xiong, N. Wang, J. Chen, C. Li, J. Energy Chem. 27, 278 (2018)CrossRefGoogle Scholar
  52. 52.
    R.C. Shen, W. Liu, D.D. Ren, J. Xie, X. Li, Appl. Surf. Sci. 466, 393 (2019)CrossRefGoogle Scholar
  53. 53.
    J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 391, 72 (2017)CrossRefGoogle Scholar
  54. 54.
    Y.D. Hou, A.B. Laursen, J.S. Zhang, G.G. Zhang, Y.S. Zhu, X.C. Wang, S. Dahl, I. Chorkendorff, Angew. Chem. Int. Ed. 52, 3621 (2013)CrossRefGoogle Scholar
  55. 55.
    S. Yan, Z. Li, Z. Zou, Langmuir 25, 10397 (2009)CrossRefGoogle Scholar
  56. 56.
    X. Jin, X. Fan, J. Tian, R. Cheng, M. Li, L. Zhang, RSC Adv. 6, 52611 (2016)CrossRefGoogle Scholar
  57. 57.
    A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Müller, R. Schlögl, J.M. Carlsson, J. Mater. Chem. 18, 4893 (2008)CrossRefGoogle Scholar
  58. 58.
    V.N. Khabashesku, J.L. Zimmerman, J.L. Margrave, Chem. Mater. 12, 3264 (2000)CrossRefGoogle Scholar
  59. 59.
    L. Ge, F. Zuo, J. Liu, Q. Ma, C. Wang, D. Sun, L. Bartels, P. Feng, J. Phys. Chem. C. 116, 13708 (2012)CrossRefGoogle Scholar
  60. 60.
    X. Ren, L. Pang, Y. Zhang, X. Ren, H. Fan, S. Liu, J. Mater. Chem. A 3, 10693 (2015)CrossRefGoogle Scholar
  61. 61.
    J. Duan, S. Chen, M. Jaroniec, S.Z. Qiao, ACS Nano 9, 931 (2015)CrossRefGoogle Scholar
  62. 62.
    L. Shi, L. Liang, F. Wang, M. Liu, K. Chen, K. Sun, N. Zhang, J. Sun, ACS Sustain. Chem. Eng. 3, 3412 (2015)CrossRefGoogle Scholar
  63. 63.
    D.L. Peng, H.H. Wang, K. Yu, Y. Chang, X.G. Ma, S.J. Dong, RSC Adv. 6, 77760 (2016)CrossRefGoogle Scholar
  64. 64.
    H.W. Tian, M. Liu, W.T. Zheng, Appl. Catal. B Environ. 225, 468 (2018)CrossRefGoogle Scholar
  65. 65.
    H.J. Li, B.W. Sun, L. Sui, D.J. Qian, M. Chen, Phys. Chem. Chem. Phys. 17, 3309 (2015)CrossRefGoogle Scholar
  66. 66.
    P.F. Xia, B.C. Zhu, B. Cheng, J.G. Yu, J.S. Xu, ACS Sustain. Chem. Eng. 6, 965 (2018)CrossRefGoogle Scholar
  67. 67.
    R.C. Shen, W. Liu, D.D. Ren, J. Xie, X. Li, Appl. Surf. Sci. 466, 393 (2018)CrossRefGoogle Scholar
  68. 68.
    Y.Y. Jiao, Q.Z. Huang, J.S. Wang, Z.H. He, Z.J. Li, Appl. Catal. B Environ. 124, 247 (2019)Google Scholar
  69. 69.
    C.Z. Chen, W.Q. Zhang, Y. Li, C.B. Cai, J. Mater. Sci. Mater. Electron. 28, 18603 (2017)CrossRefGoogle Scholar
  70. 70.
    H. Li, K. Yu, X. Lei, B. Guo, H. Fu, Z. Zhu, J. Phys. Chem. C 119, 22681 (2015)CrossRefGoogle Scholar
  71. 71.
    S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoo, M. Palanichamy, V. Murugesan, Sol. Energy Mater. Sol. Cells 77, 65 (2003)CrossRefGoogle Scholar
  72. 72.
    X.J. Bai, R.L. Zong, C.X. Li, D. Liu, Y.F. Liu, Y.F. Zhu, Appl. Catal. B Environ. 147, 82 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Qian Wang
    • 1
  • Changzhao Chen
    • 1
    Email author
  • Shiwang Zhu
    • 1
  • Xiao Ni
    • 1
  • Zhe Li
    • 2
  1. 1.School of Mechanics and Optoelectronics PhysicsAnhui University of Science and TechnologyHuainanChina
  2. 2.Center for Magnetic Materials and DevicesQujing Normal UniversityQujingChina

Personalised recommendations