Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 10, pp 4885–4896 | Cite as

A mechanistic study of photo-oxidation of phenol and AB92 by AgBr/TiO2

  • M. R. ElahifardEmail author
  • R. Behjatmanesh-Ardakani
  • S. Ahmadvand
  • B. Abbasi
  • B. Abbasi
Article

Abstract

The energy levels of semiconductors can be modified so that they selectively interact with any desirable chemicals. In this study, AgBr/TiO2 is used for selective oxidation of two well-known organic pollutants, phenol and acid blue 92, in the visible and ultraviolet regions. The results show that phenol is only degraded in the ultraviolet, but acid blue 92 can be degraded in both ultraviolet and visible regions. In the ultraviolet region, phenol is degraded by OH radicals, produced by the hole in the valence band of TiO2. In the visible region, the holes generated by the valence band (VB) of AgBr play the main role in acid blue 92 degradation. However, they are not strong enough to oxidize phenol. Also, periodic DFT calculations are performed to study electronic structures of AgBr and TiO2 and elucidate their different photo-oxidation mechanisms. Theoretical data indicates that the reduction potential of a hole in the valence band of AgBr could not generate OH radicals, and thus is unable to oxidize phenol in the visible region. On the other hand, the reduction potential of a valence band hole in TiO2 is more positive and could readily generate OH radicals to degrade phenol in the ultraviolet region. This study implies that AgBr/TiO2 can selectivity oxidize compounds with lower oxidizability, when exposed to the visible region, and higher oxidizability, when the ultraviolet region is applied.

Keywords

Composite photo-catalyst Photo-oxidation AgBr/TiO2 Organic pollutants 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Q. Peng, G. Peng, L. Wu, X. Wang, X. Yang, X. Li, Res. Chem. Intermed. 44, 6753 (2018)CrossRefGoogle Scholar
  2. 2.
    M.R. Elahifard, R. Vatan Meidanshahi, Prog. React. Kinet. Mech. 42, 244 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Chen, Q. Dong, L. Wang, X. Guo, S. Ai, H. Ding, Res. Chem. Intermed. 44, 7369 (2018)CrossRefGoogle Scholar
  4. 4.
    J.A. Rengifo-Herrera, K. Pierzchała, A. Sienkiewicz, L. Forró, J. Kiwi, C. Pulgarin, Appl. Catal. B 88, 398 (2009)CrossRefGoogle Scholar
  5. 5.
    M.R. Elahifard, S. Ahmadvand, A. Mirzanejad, Mater. Sci. Semicond. Process. 84, 10 (2018)CrossRefGoogle Scholar
  6. 6.
    S. Cai, S. Shi, H. Li, Y. Bai, D. Dang, Res. Chem. Intermed. 44, 7769 (2018)CrossRefGoogle Scholar
  7. 7.
    M.R. Elahifard, M. Padervand, S. Yasini, E. Fazeli, J. Electroceram. 37, 79 (2016)CrossRefGoogle Scholar
  8. 8.
    Y. Wang, Q. Wu, Y. Li, L. Liu, Z. Geng, Y. Li, J. Chen, W. Bai, G. Jiang, Z. Zhao, J. Mater. Sci. 53, 11015 (2018)CrossRefGoogle Scholar
  9. 9.
    S.M. Esfandfard, M.R. Elahifard, R. Behjatmanesh-Ardakani, H. Kargar, Phys. Chem. Res. 6, 547 (2018)Google Scholar
  10. 10.
    T.S. Wu, K.X. Wang, G.D. Li, S.Y. Sun, J. Sun, J.S. Chen, ACS Appl. Mater. Interfaces 2, 544 (2010)CrossRefPubMedGoogle Scholar
  11. 11.
    D. Wang, Y. Duan, Q. Luo, X. Li, J. An, L. Bao, L. Shi, J. Mater. Chem. 22, 4847 (2012)CrossRefGoogle Scholar
  12. 12.
    B. Mei, T. Pedersen, P. Malacrida, D. Bae, R. Frydendal, O. Hansen, P.C.K. Vesborg, B. Seger, I. Chorkendorff, J. Phys. Chem. C 119, 15019 (2015)CrossRefGoogle Scholar
  13. 13.
    M.R. Elahifard, M.R. Gholami, Environ. Prog. Sustain. 31, 371 (2012)CrossRefGoogle Scholar
  14. 14.
    X. Zhang, D.D. Sun, G. Li, Y. Wang, J. Photochem. Photobiol. A 199, 311 (2008)CrossRefGoogle Scholar
  15. 15.
    H. Heydari, M.R. Elahifard, R. Behjatmanesh-Ardakani, Surf. Sci. 679, 218 (2019)CrossRefGoogle Scholar
  16. 16.
    L. Shi, C. Xu, X. Sun, H. Zhang, Z. Liu, X. Qu, F. Du, J. Mater. Sci. 53, 11329 (2018)CrossRefGoogle Scholar
  17. 17.
    M. Azimzadehirani, M.R. Elahifard, S. Haghighi, M.R. Gholami, Photochem. Photobiol. Sci. 12, 1787 (2013)CrossRefPubMedGoogle Scholar
  18. 18.
    M.R. Elahifard, S. Rahimnejad, S. Haghighi, M.R. Gholami, J. Am. Chem. Soc. 129, 9552 (2007)CrossRefPubMedGoogle Scholar
  19. 19.
    C. Hu, J. Guo, J. Qu, X. Hu, Langmuir 23, 4982 (2007)CrossRefPubMedGoogle Scholar
  20. 20.
    S. Ahmadvand, M.R. Elahifard, M. Jabbarzadeh, A. Mirzanejad, K. Pflughoeft, B. Abbasi, B. Abbasi, J. Phys. Chem. B 123, 787 (2019)CrossRefPubMedGoogle Scholar
  21. 21.
    Y. Li, Y. Ding, J. Phys. Chem. C 114, 3175 (2010)CrossRefGoogle Scholar
  22. 22.
    Y. Li, H. Zhang, Z. Guo, J. Han, X. Zhao, Q. Zhao, S.J. Kim, Langmuir 24, 8351 (2008)CrossRefPubMedGoogle Scholar
  23. 23.
    M. Padervand, M.R. Elahifard, R. Vatan Meidanshahi, S. Ghasemi, S. Haghighi, M.R. Gholami, Mater. Sci. Semicond. Process. 15, 73 (2012)CrossRefGoogle Scholar
  24. 24.
    S. Rodrigues, S. Uma, I.N. Martyanov, K.J. Klabunde, J. Catal. 233, 405 (2005)CrossRefGoogle Scholar
  25. 25.
    D. Schürch, A. Currao, S. Sarkar, G. Hodes, G. Calzaferri, J. Phys. Chem. B 106, 12764 (2002)CrossRefGoogle Scholar
  26. 26.
    P. Wang, Y. Tang, Z. Dong, Z. Chen, T.T. Lim, J. Mater. Chem. A 1, 4718 (2013)CrossRefGoogle Scholar
  27. 27.
    C. Hu, Y. Lan, J. Qu, X. Hu, A. Wang, J. Phys. Chem. B 110, 4066 (2006)CrossRefPubMedGoogle Scholar
  28. 28.
    M.R. Elahifard, S. Rahimnejad, R. Pourbaba, S. Haghighi, M.R. Gholami, Prog. React. Kinet. Mech. 36, 38 (2011)CrossRefGoogle Scholar
  29. 29.
    Y. Sui, C. Su, X. Yang, J. Hu, X. Lin, J. Mol. Catal. A Chem. 410, 226 (2015)CrossRefGoogle Scholar
  30. 30.
    X. Rong, F. Qiu, C. Zhang, L. Fu, Y. Wang, D. Yang, J. Alloys Compd. 639, 153 (2015)CrossRefGoogle Scholar
  31. 31.
    W. Wang, L. Jing, Y. Qu, Y. Luan, H. Fu, Y. Xiao, J. Hazard. Mater. 243, 169 (2012)CrossRefPubMedGoogle Scholar
  32. 32.
    Y. Cui, Z. Zhang, B. Li, R. Guo, X. Zhang, X. Cheng, M. Xie, Q. Cheng, Sep. Purif. Technol. 197, 189 (2018)CrossRefGoogle Scholar
  33. 33.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)CrossRefGoogle Scholar
  34. 34.
    M. Farsad, M.R. Elahifard, R. Behjatmanesh-Ardakani, Theor. Chem. Acc. 137, 142 (2018)CrossRefGoogle Scholar
  35. 35.
    M. Farsad, M.R. Elahifard, R. Behjatmanesh-Ardakani, Phys. Chem. Res. 5, 831 (2017)Google Scholar
  36. 36.
    F. Lohmann, Z. Naturforschung A 22, 843 (1967)Google Scholar
  37. 37.
    B. Hammer, L.B. Hansen, J.K. Nørskov, Phys. Rev. B 59, 7413 (1999)CrossRefGoogle Scholar
  38. 38.
    M.J. Han, T. Ozaki, J. Yu, Phys. Rev. B 73, 045110 (2006)CrossRefGoogle Scholar
  39. 39.
    J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)CrossRefGoogle Scholar
  40. 40.
    S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980)CrossRefGoogle Scholar
  41. 41.
    V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, Comput. Phys. Commun. 180, 2175 (2009)CrossRefGoogle Scholar
  42. 42.
    X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko, A. Sanfilippo, K. Reuter, M. Scheffler, New J. Phys. 14, 053020 (2012)CrossRefGoogle Scholar
  43. 43.
    V. Havu, V. Blum, P. Havu, M. Scheffler, J. Comput. Phys. 228, 8367 (2009)CrossRefGoogle Scholar
  44. 44.
    R. Enríquez, A.G. Agrios, P. Pichat, Catal. Today 120, 196 (2007)CrossRefGoogle Scholar
  45. 45.
    R. Enriquez, P. Pichat, J. Environ. Sci. Health A 41, 955 (2006)CrossRefGoogle Scholar
  46. 46.
    D. Zhang, H. Tang, Y. Wang, K. Wu, H. Huang, G. Tang, J. Yang, Appl. Surf. Sci. 319, 306 (2014)CrossRefGoogle Scholar
  47. 47.
    X. Xiao, L. Ge, C. Han, Y. Li, Z. Zhao, Y. Xin, S. Fang, L. Wu, P. Qiu, Appl. Catal. B 163, 564 (2015)CrossRefGoogle Scholar
  48. 48.
    H. Tang, H. Berger, P. Schmid, F. Levy, G. Burri, Solid State Commun. 87, 847 (1993)CrossRefGoogle Scholar
  49. 49.
    S. Glaus, G. Calzaferri, Photochem. Photobiol. Sci. 2, 398 (2003)CrossRefGoogle Scholar
  50. 50.
    M. Kilic, Z. Cinar, J. Mol. Struct. THEOCHEM 851, 263 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of EngineeringArdakan UniversityArdakanIran
  2. 2.Department of ChemistryPayame Noor UniversityTehranIran
  3. 3.Research Center of Environmental ChemistryPayame Noor UniversityArdakanIran
  4. 4.Department of ChemistryUniversity of Nevada, RenoRenoUSA
  5. 5.Department of Metallurgical EngineeringUniversity of Nevada, RenoRenoUSA
  6. 6.Department of Mechanical EngineeringOregon State UniversityCorvallisUSA

Personalised recommendations