Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 10, pp 4737–4756 | Cite as

Magnetic calcined oyster shell functionalized with taurine immobilized on β-cyclodextrin (Fe3O4/COS@β-CD-SO3H NPs) as green and magnetically reusable nanocatalyst for efficient and rapid synthesis of spirooxindoles

  • Narges Mohammadian
  • Batool AkhlaghiniaEmail author
Article
  • 93 Downloads

Abstract

Magnetic calcined oyster shell functionalized with taurine immobilized on β-cyclodextrin (Fe3O4/COS@β-CD-SO3H NPs) was prepared as a new stable, long-lived, highly efficient, and exceptional reusable magnetic nanostructured catalyst. The as-prepared solid acidic catalyst was characterized by various spectroscopic and microscopic techniques such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), vibrating-sample magnetometry (VSM), thermogravimetric analysis (TGA)/differential thermogravimetry (DTG), and elemental (CHNS) analysis. The results clearly showed that the synthesized superparamagnetic catalyst existed as uniform spheres with average particle size of 16–25 nm. The new magnetic nanocatalyst (Fe3O4/COS@β-CD-SO3H NPs) was found to be very effective in one-pot multi-component reaction of isatin, active methylene component, and 1,3-dicarbonyl compounds for rapid preparation of spirooxindoles with fused chromenes in water in excellent yield. The most promising features of the presented approach are the short reaction time (15–22 min), magnetic separation of the nanostructured catalyst, simple work-up procedure, reusability of the catalyst for at least eight successive runs without any appreciable loss of activity, and high product yields (about 94–98%). Surprisingly, the present methodology proved to be environmentally sustainable, low cost, and industrially profitable for scale-up and commercialization.

Graphical abstract

A novel and green approach for synthesis of spirooxindoles using a green, inexpensive, and efficient nanocatalyst was investigated.

Keywords

Spirooxindoles Nanocatalyst Taurine Fe3O4 /COS@β-CD-SO3H NPs 

Notes

Acknowledgements

The authors gratefully acknowledge partial support of this study by Ferdowsi University of Mashhad Research Council (Grant no. 3/43388).

Supplementary material

11164_2019_3860_MOESM1_ESM.docx (5.5 mb)
Supplementary material 1 (DOCX 5612 kb)

References

  1. 1.
    K. Ding, Y. Lu, Z. Nikolovska-Coleska, G. Wang, S. Qiu, S. Shangary, W. Gao, D. Qin, J. Stuckey, K. Krajewski, P.P. Roller, S. Wang, J. Med. Chem. 49, 3432 (2006)CrossRefPubMedGoogle Scholar
  2. 2.
    C.V. Galliford, K.A. Scheidt, Angew. Chem. Int. Ed. 46, 8748 (2007)CrossRefGoogle Scholar
  3. 3.
    C. Konkoy, D. Fick, S. Cai, N. Lan, J. Keana, in Chem. Abst. (2001), p. 29313aGoogle Scholar
  4. 4.
    M. Zhang, Q.-Y. Fu, G. Gao, H.-Y. He, Y. Zhang, Y.-S. Wu, Z.-H. Zhang, ACS Sustain. Chem. Eng. 5, 6175 (2017)CrossRefGoogle Scholar
  5. 5.
    S.-L. Zhu, S.-J. Ji, Y. Zhang, Tetrahedron 63, 9365 (2007)CrossRefGoogle Scholar
  6. 6.
    Y.M. Litvinov, V.Y. Mortikov, A.M. Shestopalov, ACS Comb. Sci. 10, 741 (2008)Google Scholar
  7. 7.
    M. Kidwai, A. Jain, V. Nemaysh, R. Kumar, P.M. Luthra, Med. Chem. Res. 22, 2717 (2013)CrossRefGoogle Scholar
  8. 8.
    S. Gao, C.H. Tsai, C. Tseng, C.-F. Yao, Tetrahedron 64, 9143 (2008)CrossRefGoogle Scholar
  9. 9.
    M. Dabiri, M. Bahramnejad, M. Baghbanzadeh, Tetrahedron 65, 9443 (2009)CrossRefGoogle Scholar
  10. 10.
    S.-J. Chai, Y.-F. Lai, J.-C. Xu, H. Zheng, Q. Zhu, P.-F. Zhang, Adv. Synth. Catal. 353, 371 (2011)CrossRefGoogle Scholar
  11. 11.
    D.R. Chandam, A.G. Mulik, D.R. Patil, M.B. Deshmukh, Res. Chem. Intermed. 42, 1411 (2016)CrossRefGoogle Scholar
  12. 12.
    A. Dandia, V. Parewa, A.K. Jain, K.S. Rathore, Green Chem. 13, 2135 (2011)CrossRefGoogle Scholar
  13. 13.
    L.-M. Wang, N. Jiao, J. Qiu, J.-J. Yu, J.-Q. Liu, F.-L. Guo, Y. Liu, Tetrahedron 66, 339 (2010)CrossRefGoogle Scholar
  14. 14.
    K. Rad-Moghadam, L. Youseftabar-Miri, Tetrahedron 67, 5693 (2011)CrossRefGoogle Scholar
  15. 15.
    B. Sadeghi, M. Ghasemi Pirbaluti, P. Farokhi Nezhad, R. Abbasi Nezhad, Res. Chem. Intermed. 41, 4047 (2015)CrossRefGoogle Scholar
  16. 16.
    G. Mohammadi Ziarani, A. Badiei, S. Mousavi, N. Lashgari, A. Shahbazi, Chin. J. Catal. 33, 1832 (2012)CrossRefGoogle Scholar
  17. 17.
    F. Mohamadpour, M.T. Maghsoodlou, R. Heydari, M. Lashkari, Res. Chem. Intermed. 42, 7841 (2016)CrossRefGoogle Scholar
  18. 18.
    C. Bodhak, A. Kundu, A. Pramanik, RSC Adv. 5, 85202 (2015)CrossRefGoogle Scholar
  19. 19.
    B. Karmakar, A. Nayak, J. Banerji, Tetrahedron Lett. 53, 5004 (2012)CrossRefGoogle Scholar
  20. 20.
    R.-Y. Guo, P. Wang, G.-D. Wang, L.-P. Mo, Z.-H. Zhang, Tetrahedron 69, 2056 (2013)CrossRefGoogle Scholar
  21. 21.
    M. Daraie, Y.S. Beheshtiha, M.M. Heravi, Monatsh. Chem. Chem. Mon. 146, 191 (2015)CrossRefGoogle Scholar
  22. 22.
    R. Ghahremanzadeh, Z. Rashid, A.H. Zarnani, H. Naeimi, Appl. Catal. A 467, 270 (2013)CrossRefGoogle Scholar
  23. 23.
    A.R. Karimi, M. Sourinia, Z. Dalirnasab, M. Karimi, Can. J. Chem. 93, 546 (2015)CrossRefGoogle Scholar
  24. 24.
    A.R. Karimi, R. Davood Abadi, Z. Dalirnasab, Res. Chem. Intermed. 41, 7427 (2015)CrossRefGoogle Scholar
  25. 25.
    A. Hasaninejad, N. Golzar, M. Beyrati, A. Zare, M.M. Doroodmand, J. Mol. Catal. A Chem. 372, 137 (2013)CrossRefGoogle Scholar
  26. 26.
    B. Maheshwar Rao, G.N. Reddy, T.V. Reddy, B.L.A.P. Devi, R.B.N. Prasad, J.S. Yadav, B.V.S. Reddy, Tetrahedron Lett. 54, 2466 (2013)CrossRefGoogle Scholar
  27. 27.
    A. Thakur, M. Tripathi, U.C. Rajesh, D.S. Rawat, RSC Adv. 3, 18142 (2013)CrossRefGoogle Scholar
  28. 28.
    S.P. Satasia, P.N. Kalaria, J.R. Avalani, D.K. Raval, Tetrahedron 70, 5763 (2014)CrossRefGoogle Scholar
  29. 29.
    S.S.E. Ghodsinia, B. Akhlaghinia, RSC Adv. 5, 49849 (2015)CrossRefGoogle Scholar
  30. 30.
    S.S.E. Ghodsinia, B. Akhlaghinia, R. Jahanshahi, RSC Adv. 6, 63613 (2016)CrossRefGoogle Scholar
  31. 31.
    R. Jahanshahi, B. Akhlaghinia, RSC Adv. 5, 104087 (2015)CrossRefGoogle Scholar
  32. 32.
    R. Jahanshahi, B. Akhlaghinia, RSC Adv. 6, 29210 (2016)CrossRefGoogle Scholar
  33. 33.
    E. Karimian, B. Akhlaghinia, S.S.E. Ghodsinia, J. Chem. Sci. 128, 429 (2016)CrossRefGoogle Scholar
  34. 34.
    S.M. Masjed, B. Akhlaghinia, M. Zarghani, N. Razavi, Aust. J. Chem. 70, 33 (2017)CrossRefGoogle Scholar
  35. 35.
    N. Mohammadian, B. Akhlaghinia, Res. Chem. Intermed. 43, 22 (2017)CrossRefGoogle Scholar
  36. 36.
    N. Razavi, B. Akhlaghinia, RSC Adv. 5, 12372 (2015)CrossRefGoogle Scholar
  37. 37.
    N. Razavi, B. Akhlaghinia, New J. Chem. 40, 447 (2016)CrossRefGoogle Scholar
  38. 38.
    N.Y. Siavashi, B. Akhlaghinia, M. Zarghani, Res. Chem. Intermed. 42, 5789 (2016)CrossRefGoogle Scholar
  39. 39.
    Z. Zarei, B. Akhlaghinia, Chem. Pap. 69, 1421 (2015)CrossRefGoogle Scholar
  40. 40.
    Z. Zarei, B. Akhlaghinia, RSC Adv. 6, 106473 (2016)CrossRefGoogle Scholar
  41. 41.
    M. Zarghani, B. Akhlaghinia, Appl. Organomet. Chem. 29, 683 (2015)CrossRefGoogle Scholar
  42. 42.
    M. Zarghani, B. Akhlaghinia, RSC Adv. 5, 87769 (2015)CrossRefGoogle Scholar
  43. 43.
    M. Zarghani, B. Akhlaghinia, RSC Adv. 6, 31850 (2016)CrossRefGoogle Scholar
  44. 44.
    M. Zarghani, B. Akhlaghinia, RSC Adv. 6, 38592 (2016)CrossRefGoogle Scholar
  45. 45.
    M. Zarghani, B. Akhlaghinia, Bull. Chem. Soc. Jpn. 89, 1192 (2016)CrossRefGoogle Scholar
  46. 46.
    R. Jahanshahi, B. Akhlaghinia, Chem. Pap. 71, 1351 (2017)CrossRefGoogle Scholar
  47. 47.
    S.S.E. Ghodsinia, B. Akhlaghinia, Green Chem. (2019).  https://doi.org/10.1039/C8GC03931C CrossRefGoogle Scholar
  48. 48.
    M.S. Ghasemzadeh, B. Akhlaghinia, New J. Chem. 43, 5341 (2019)CrossRefGoogle Scholar
  49. 49.
    S. Pakdel Asgarabad, B, Akhlaghinia, A. Mohammadinezhad, Chem. Africa 1 (2019)Google Scholar
  50. 50.
    H. Karimzadegan, B. Akhlaghinia, M.S. Ghasemzadeh, Iran. J. Catal. (2019) (in press) Google Scholar
  51. 51.
    M. Zamani, B. Akhlaghinia, A. Mohammadinezhad, ChemistrySelect 3, 9431 (2018)CrossRefGoogle Scholar
  52. 52.
    B. Akhlaghinia, P. Sanati, A. Mohammadinezhad, Z. Zareie, Res. Chem. Intermed. 45, 3215 (2019)CrossRefGoogle Scholar
  53. 53.
    A. Mohammadinezhad, B. Akhlaghinia, Green Chem. 19, 5625 (2017)CrossRefGoogle Scholar
  54. 54.
    Z. Zarei, B. Akhlaghinia, New J. Chem. 41, 15485 (2017)CrossRefGoogle Scholar
  55. 55.
    R. Jahanshahi, B. Akhlaghinia, New J. Chem. 41, 7203 (2017)CrossRefGoogle Scholar
  56. 56.
    N. Mohammadian, B. Akhlaghinia, Res. Chem. Intermed. 44, 18 (2018)CrossRefGoogle Scholar
  57. 57.
    R. Jahanshahi, B. Akhlaghinia, Res. Chem. Intermed. 44, 2451 (2018)CrossRefGoogle Scholar
  58. 58.
    M. Nejatianfar, B. Akhlaghinia, R. Jahanshahi, Appl. Organomet. Chem. 32, 4095 (2018)CrossRefGoogle Scholar
  59. 59.
    A. Mohammadinezhad, B. Akhlaghinia, Aust. J. Chem. 71, 32 (2017)CrossRefGoogle Scholar
  60. 60.
    A. Schätz, M. Hager, O. Reiser, Adv. Funct. Mater. 19, 2109 (2009)CrossRefGoogle Scholar
  61. 61.
    M. Zhang, Y.-H. Liu, Z.-R. Shang, H.-C. Hu, Z.-H. Zhang, Catal. Commun. 88, 39 (2017)CrossRefGoogle Scholar
  62. 62.
    M.-N. Chen, L.-P. Mo, Z.-S. Cui, Z.-H. Zhang, Curr. Opin. Green Sustain. Chem. 15, 27 (2019)CrossRefGoogle Scholar
  63. 63.
    M. Zhang, P. Liu, Y.-H. Liu, Z.-R. Shang, H.-C. Hu, Z.-H. Zhang, RSC Adv. 6, 106160 (2016)CrossRefGoogle Scholar
  64. 64.
    S. Sobhani, R. Jahanshahi, New J. Chem. 37, 1009 (2013)CrossRefGoogle Scholar
  65. 65.
    Q. Li, G. Tang, X. Xiong, Y. Cao, L. Chen, F. Xu, H. Tan, Sens. Actuators B Chem. 215, 86 (2015)CrossRefGoogle Scholar
  66. 66.
    M. Arana, S.E. Jacobo, H. Troiani, P.G. Bercoff, IEEE Trans. Magn. 49, 4547 (2013)CrossRefGoogle Scholar
  67. 67.
    B. Tural, N. Özkan, M. Volkan, J. Phys. Chem. Solids 70, 860 (2009)CrossRefGoogle Scholar
  68. 68.
    A.P. Herrera, M. Rodriguez, M. Torres-Lugo, C. Rinaldi, J. Mater. Chem. 18, 855 (2008)CrossRefGoogle Scholar
  69. 69.
    Z. Durmus, H. Kavas, M.S. Toprak, A. Baykal, T.G. Altınçekiç, A. Aslan, A. Bozkurt, S. Coşgun, J. Alloys Compd. 484, 371 (2009)CrossRefGoogle Scholar
  70. 70.
    H. Wei, N. Insin, J. Lee, H.-S. Han, J.M. Cordero, W. Liu, M.G. Bawendi, Nano Lett. 12, 22 (2012)CrossRefPubMedGoogle Scholar
  71. 71.
    M.A. Nasseri, F. Kamali, B. Zakerinasab, RSC Adv. 5, 26517 (2015)CrossRefGoogle Scholar
  72. 72.
    H.R. Safaei, M. Shekouhy, S. Rahmanpur, A. Shirinfeshan, Green Chem. 14, 1696 (2012)CrossRefGoogle Scholar
  73. 73.
    J. Zhou, Z. Dong, H. Yang, Z. Shi, X. Zhou, R. Li, Appl. Surf. Sci. 279, 360 (2013)CrossRefGoogle Scholar
  74. 74.
    M. Osada, C. Miura, Y.S. Nakagawa, M. Kaihara, M. Nikaido, K. Totani, Carbohydr. Polym. 92, 1573 (2013)CrossRefPubMedGoogle Scholar
  75. 75.
    F.G. Pearson, R.H. Marchessault, C.Y. Liang, J. Polym. Sci. 43, 101 (1960)CrossRefGoogle Scholar
  76. 76.
    G. Vidal-Valat, J.P. Vidal, K. Kurki-Suonio, Acta Crystallogr. A 34, 594 (1978)CrossRefGoogle Scholar
  77. 77.
    H. Okudera, K. Kihara, T. Matsumoto, Acta Crystallogr. B 52, 450 (1996)CrossRefGoogle Scholar
  78. 78.
    G.H. Du, Z.L. Liu, X. Xia, Q. Chu, S.M. Zhang, J. Sol-Gel. Sci. Technol. 39, 285 (2006)CrossRefGoogle Scholar
  79. 79.
    A. Khalafi-Nezhad, S. Mohammadi, ACS Comb. Sci. 15, 512 (2013)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceFerdowsi University of MashhadMashhadIran

Personalised recommendations