Photocatalytic properties of Zn2SnO4 powders prepared by different modified hydrothermal routes

  • Siara SilvestriEmail author
  • Nádia Stefanello
  • Julia da Silveira Salla
  • Edson Luiz Foletto


In this work, different synthesis methods of zinc stannate (Zn2SnO4–ZTO) were proposed in order to obtain a material with a greater porous structure and higher surface area when compared to conventional hydrothermal method. Zn2SnO4 particles were prepared using a conventional oven method (CO), ultrasound (US), microwave (MW) and high pressure Asher (HPA), all followed by calcination at 500 °C. Fourier-transform infrared spectroscopy, X-ray diffraction, N2 adsorption–desorption (BET and BJH), diffuse reflectance spectroscopy, particle-size distribution and scanning electron microscopy were used to characterize the materials. ZTO prepared by HPA (20 bar) showed a greater surface area. On the other hand, particles with higher mesoporosity and band gap were obtained by CO route. The US route led to the formation of ZTO with larger average particle size. Therefore, all hydrothermal routes employed in this work were able to synthesize ZTO, each one with its peculiarity, producing particles with different characteristics. The ZTO photocatalytic properties were evaluated by the decolorization of Procion red dye solution. The ZTOs synthesized by HPA and MW routes showed higher photocatalytic activity, being able to decolorize more than 70% of the dye solution at 60 min under sunlight.


Photocatalysis Zinc stannate Ultrasound Microwave High-pressure Asher 



The authors would like to thank CAPES (PNPD - Nº 20132633-42002010038P6) (Brazilian Federal Agency for Support and Evaluation of Graduate Education), CAPES/FAPERGS Bolsista CAPES/BRASIL Nº 88887.195036/2018-00 and CNPq (454645/2012-0) (National Council for Scientific and Technological Development) for the financial support.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

Supplementary material

11164_2019_3832_MOESM1_ESM.docx (749 kb)
Supplementary material 1 (DOCX 749 kb)


  1. 1.
    I. Saafi, R. Dridi, A. Mhamdi, M.H. Lakhdar, K. Boubaker, A. Amlouk, M. Amlouk, Optik (Stuttg) 126, 4382 (2015)CrossRefGoogle Scholar
  2. 2.
    N. Verma, S. Basu, Asian J. Sci. Technol. 6, 2122 (2015)Google Scholar
  3. 3.
    C. Jaramillo-Páez, P. Sánchez-Cid, J.A. Navío, M.C. Hidalgo, J. Environ. Chem. Eng. 6, 7161 (2018)CrossRefGoogle Scholar
  4. 4.
    H.J. Wang, Y. Cao, L.L. Wu, S.S. Wu, A. Raza, N. Liu, J.Y. Wang, T. Miyazawa, J. Environ. Chem. Eng. 6, 6771 (2018)CrossRefGoogle Scholar
  5. 5.
    A. Chaudhary, A. Mohammad, S.M. Mobin, Mater. Sci. Eng. B 227, 136 (2018)CrossRefGoogle Scholar
  6. 6.
    E.L. Foletto, J.M. Simões, M.A. Mazutti, S.L. Jahn, E.I. Muller, L.S.F. Pereira, E.M.M. Flores, Ceram. Int. 39, 4569 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Ben Ali, F. Barka-Bouaifel, H. Elhouichet, B. Sieber, A. Addad, L. Boussekey, M. Férid, R. Boukherroub, J. Colloid Interface Sci. 457, 360 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Najam Khan, M. Al-Hinai, A. Al-Hinai, J. Dutta, Ceram. Int. 40, 8743 (2014)CrossRefGoogle Scholar
  9. 9.
    E.L. Foletto, S.L. Jahn, R.F.P.M. Moreira, J. Appl. Eletrochem. 40, 59 (2010)CrossRefGoogle Scholar
  10. 10.
    P.P. Das, A. Roy, M. Tathavadekar, P.S. Devi, Appl. Catal. B Environ. 203, 692 (2017)CrossRefGoogle Scholar
  11. 11.
    P. Jayabal, V. Sasirekha, J. Mayandi, V. Ramakrishnan, Superlattices Microstruct. 75, 775 (2014)CrossRefGoogle Scholar
  12. 12.
    L. Qin, S. Liang, A. Pan, X. Tan, Mater. Lett. 164, 44 (2016)CrossRefGoogle Scholar
  13. 13.
    X. Ji, X. Huang, Q. Zhao, A. Wang, X. Liu, J. Nanomater. 2014, 1 (2014)Google Scholar
  14. 14.
    F. Belliard, P.A. Connor, J.T.S. Irvine, Solid State Ionics 135, 163 (2000)CrossRefGoogle Scholar
  15. 15.
    J.E. Jeronsia, L.A. Joseph, M.M. Jaculine, P.A. Vinosha, S.J. Das, J. Taibah Univ. Sci. 10, 601 (2016)CrossRefGoogle Scholar
  16. 16.
    G. Sun, S. Zhang, Y. Li, Int. J. Photoenergy 2014, 25 (2014)Google Scholar
  17. 17.
    S. Kameli, A. Mehrizad, Photochem. Photobiol. 95, 512 (2019)CrossRefGoogle Scholar
  18. 18.
    A. Mehrizad, M.A. Behnajady, P. Gharbani, S. Sabbagh, J. Clean. Prod. 215, 1341 (2019)CrossRefGoogle Scholar
  19. 19.
    E.B. Yazdani, A. Mehrizad, J. Mol. Liq. 255, 102 (2018)CrossRefGoogle Scholar
  20. 20.
    P. Bakhtkhosh, A. Mehrizad, J. Mol. Liq. 240, 65 (2017)CrossRefGoogle Scholar
  21. 21.
    A.G. Khosroshahi, A. Mehrizad, J. Mol. Liq. 275, 629 (2019)CrossRefGoogle Scholar
  22. 22.
    J.-B. Shi, P.-F. Wu, H.-S. Lin, Y.-T. Lin, H.-W. Lee, C.-T. Kao, W.-H. Liao, S.-L. Young, Nanoscale Res. Lett. 9, 210 (2014)CrossRefGoogle Scholar
  23. 23.
    A.R. Babar, S.B. Kumbhar, S.S. Shinde, A.V. Moholkar, J.H. Kim, K.Y. Rajpure, J. Alloys Compd. 509, 7508 (2011)CrossRefGoogle Scholar
  24. 24.
    Y. Zhao, L. Hu, H. Liu, M. Liao, X. Fang, L. Wu, Sci. Rep. 4, 6847 (2014)CrossRefGoogle Scholar
  25. 25.
    Y. Sun, J.C. Colmenares, Z.-R. Tang, Y.-J. Xu, S. Liu, Chem. Soc. Rev. 44, 5053 (2015)CrossRefGoogle Scholar
  26. 26.
    X. Fu, X. Wang, J. Long, Z. Ding, T. Yan, G. Zhang, Z. Zhang, H. Lin, X. Fu, J. Solid State Chem. 182, 517 (2009)CrossRefGoogle Scholar
  27. 27.
    A.V. Borhade, Y.R. Baste, Arab. J. Chem. 10, 404 (2017)CrossRefGoogle Scholar
  28. 28.
    C.G. Anchieta, D. Sallet, E.L. Foletto, S.S. Da Silva, O. Chiavone-Filho, C.A.O. Do Nascimento, Ceram. Int. 40, 4173 (2014)CrossRefGoogle Scholar
  29. 29.
    Y. Tang, J. Tian, T. Malkoske, W. Le, B. Chen, J. Mater. Sci. 52, 1581 (2017)CrossRefGoogle Scholar
  30. 30.
    E.L. Foletto, D.S. Paz, J.M. Simões, S. Battiston, G.C. Collazzo, M.A. Mazutti, D. Bertuol, S.L. Jahn, Lat. Am. Appl. Res. 43, 23 (2013)Google Scholar
  31. 31.
    İ. Altın, M. Sökmen, CLEAN Soil Air Water 43, 1025 (2015)CrossRefGoogle Scholar
  32. 32.
    M.D. Donohue, G.L. Aranovich, Fluid Phase Equilib. 158–160, 557 (1999)CrossRefGoogle Scholar
  33. 33.
    M. Thommes, Chem. Ing. Technol. 82, 1059 (2010)CrossRefGoogle Scholar
  34. 34.
    M. Hojamberdiev, R. Mohan, K. Morita, M. Antônio, R. Riedel, Microporous Mesoporous Mater. 151, 330 (2012)CrossRefGoogle Scholar
  35. 35.
    P. Schneider, P. Hudec, O. Solcova, Microporous Mesoporous Mater. 115, 491 (2008)CrossRefGoogle Scholar
  36. 36.
    A.L. Patterson, Phys. Rev. 56, 978 (1939)CrossRefGoogle Scholar
  37. 37.
    R.E. Marotti, P. Giorgi, G. Machado, E.A. Dalchiele, Sol. Energy Mater. Sol. Cells 90, 2356 (2006)CrossRefGoogle Scholar
  38. 38.
    A.A. Gribb, J.F. Banfield, Am. Miner. 82, 717 (1997)CrossRefGoogle Scholar
  39. 39.
    S. Silvestri, B. Szpoganicz, J. Schultz, A.S. Mangrich, D. Hotza, D.E. García, J.A. Labrincha, Ceram. Int. 42, 12074 (2016)CrossRefGoogle Scholar
  40. 40.
    J.-W. Shi, J.-T. Zheng, P. Wu, J. Hazard. Mater. 161, 416 (2009)CrossRefGoogle Scholar
  41. 41.
    S. Silvestri, E.L. Foletto, Ceram. Int. 43, 14057 (2017)CrossRefGoogle Scholar
  42. 42.
    S. Benramache, O. Belahssen, A. Guettaf, A. Arif, J. Semicond. 35, 1 (2014)Google Scholar
  43. 43.
    Z.R. Tang, B. Han, C. Han, Y.J. Xu, J. Mater. Chem. A 5, 2387 (2017)CrossRefGoogle Scholar
  44. 44.
    D. Ma, Z. Lu, Y. Tang, T. Li, Z. Tang, Z. Yang, Phys. Lett. A 1, 5 (2014)Google Scholar
  45. 45.
    S. Suzuki, T. Onodera, J. Kawaji, T. Mizukami, K. Yamaga, Appl. Catal. A Gen. 427–428, 92 (2012)CrossRefGoogle Scholar
  46. 46.
    J. Sharma, M. Vashishtha, D.O. Shah, Glob. J. Sci. Front. Res. B Chem. 14, 19 (2014)Google Scholar
  47. 47.
    M. Abbasi, U. Rafique, G. Murtaza, Arab. J. Chem. 11, 827 (2018)CrossRefGoogle Scholar
  48. 48.
    P. Galář, B. Dzurňák, P. Malý, J. Čermák, A. Kromka, M. Omastová, B. Rezek, Int. J. Electrochem. Sci. 8, 57 (2013)Google Scholar
  49. 49.
    M. Kamenova, T. Marinova, J. Lumin. 80, 179 (1999)Google Scholar
  50. 50.
    L. Gracia, A. Beltrán, J. Andrés, J. Phys. Chem. C 115, 7740 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Environmental Engineering DepartmentFederal University of Santa MariaSanta MariaBrazil
  2. 2.Chemical Engineering DepartmentFederal University of Santa MariaSanta MariaBrazil

Personalised recommendations