Advertisement

LaFeO3 perovskite nanoparticles as high-performance reusable catalyst for convenient synthesis of β-amido ketones under mild conditions

  • Hossein NaeimiEmail author
  • Soraya Rahmatinejad
Article
  • 8 Downloads

Abstract

Perovskite-type LaFeO3 nanoparticles were successfully prepared by a simple sol–gel method and used as a highly active, heterogeneous, and reusable nanocatalyst. The prepared catalyst was characterized by scanning electron microscopy, powder X-ray diffraction analysis, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared (FT-IR) spectroscopy. The catalytic activity of LaFeO3 nanocatalyst was investigated in synthesis of β-amido ketone derivatives by reaction of acetophenone, different substituted aldehydes, nitriles, and acetyl chloride. This method offers several advantages such as environmental sustainability, low catalyst loading, easy workup and purification of products, excellent yield, and catalyst reusability of at least four times without any remarkable change in catalytic activity.

Graphical abstract

Perovskite-type LaFeO3 nanoparticles were prepared by a citric acid-based sol–gel route and successfully used as a heterogeneous and reusable nanocatalyst for convenient synthesis of β-amido ketones derivatives.

Keywords

β-Amido ketones Nanocatalyst Heterogeneous catalysis Perovskite-type LaFeO3 

Notes

Acknowledgements

The authors are grateful to the University of Kashan for supporting this work by grant no. 159148/69.

References

  1. 1.
    F.K. Behbahani, N. Doragi, M.M. Heravi, Synth. Commun. 42, 5 (2012)CrossRefGoogle Scholar
  2. 2.
    A.R. Momeni, M. Sadeghi, Appl. Catal. A 357, 1 (2009)CrossRefGoogle Scholar
  3. 3.
    W.-C. Gao, F. Hu, Y.-M. Huo, H.-H. Chang, X. Li, W.-L. Wei, Org. Lett. 17, 15 (2015)Google Scholar
  4. 4.
    M. Mukhopadhyay, B. Bhatia, J. Iqbal, Tetrahedron Lett. 38, 6 (1997)CrossRefGoogle Scholar
  5. 5.
    A.K. Tiwari, R.M. Kumbhare, S.B. Agawane, A.Z. Ali, K.V. Kumar, Bioorg. Med. Chem. Lett. 18, 14 (2008)CrossRefGoogle Scholar
  6. 6.
    V. Shinu, B. Sheeja, E. Purushothaman, D. Bahulayan, Tetrahedron Lett. 50, 34 (2009)CrossRefGoogle Scholar
  7. 7.
    T.A. Salama, S.S. Elmorsy, A.-G.M. Khalil, M.A. Ismail, Tetrahedron Lett. 48, 35 (2007)Google Scholar
  8. 8.
    X.-H. Zhang, J.-F. Yan, L. Fan, G.-B. Wang, D.-C. Yang, Acta. Pharm. Sin. B 1, 2 (2011)Google Scholar
  9. 9.
    M.R. Nabid, S.J.T. Rezaei, Appl. Catal. A 366, 1 (2009)CrossRefGoogle Scholar
  10. 10.
    E. Rafiee, F. Shahbazi, M. Joshaghani, F. Tork, J. Mol. Catal. A: Chem. 242, 1 (2005)CrossRefGoogle Scholar
  11. 11.
    Y. Wang, J. Zhou, K. Liu, L. Dai, J. Mol. Catal. A Chem. 366, 195 (2013)CrossRefGoogle Scholar
  12. 12.
    M.A. Zolfigol, A. Khazaei, A. Zare, M. Mokhlesi, T. Hekmat-Zadeh, A. Hasaninejad, F. Derakhshan-Panah, A.R. Moosavi-Zare, H. Keypour, A.A. Dehghani-Firouzabadi, J. Chem. Sci. 124, 6 (2012)CrossRefGoogle Scholar
  13. 13.
    R. Ghosh, S. Maiti, A. Chakraborty, S. Chakraborty, A.K. Mukherjee, Tetrahedron 62, 17 (2006)Google Scholar
  14. 14.
    A. Khazaei, M.A. Zolfigol, M. Mokhlesi, R. Rostamian, J. Iran. Chem. Soc. 10, 6 (2013)CrossRefGoogle Scholar
  15. 15.
    M. Shokouhimehr, Catalysts 5, 2 (2015)CrossRefGoogle Scholar
  16. 16.
    S. Shylesh, V. Schünemann, W.R. Thiel, Angew. Chem. Int. Ed. 49, 20 (2010)Google Scholar
  17. 17.
    S. Olveira, S.P. Forster, S. Seeger, J. Nanotech. 2014, 1 (2014)CrossRefGoogle Scholar
  18. 18.
    S.B. Kalidindi, B.R. Jagirdar, ChemSusChem 5, 1 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Nakayama, J. Mater. Sci. 36, 23 (2001)CrossRefGoogle Scholar
  20. 20.
    S.A. Mir, M. Ikram, K. Asokan, J. Phys: Conf. Ser. 534, 012017 (2014)Google Scholar
  21. 21.
    P.V. Serna, C.G. Campos, F.S. De Jesús, A.M.B. Miró, J. Lorán, J. Antonio, J. Longwell, J. Mater. Res. 19, 389 (2016)CrossRefGoogle Scholar
  22. 22.
    M. O’Connell, A. Norman, C. Hüttermann, M. Morris, Catal. Today 47, 1 (1999)CrossRefGoogle Scholar
  23. 23.
    F. Polo-Garzon, Z. Wu, J. Mater. Chem. A 6, 7 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Farhadi, F. Siadatnasab, J. Mol. Catal. A: Chem. 339, 1 (2011)CrossRefGoogle Scholar
  25. 25.
    G. Shabbir, A. Qureshi, K. Saeed, Mater. Lett. 60, 29 (2006)CrossRefGoogle Scholar
  26. 26.
    Y.-P. Luo, Q. Chen, Chem. Pap. 67, 5 (2013)Google Scholar
  27. 27.
    H. Mao, J. Wan, Y. Pan, Tetrahedron 65, 5 (2009)CrossRefGoogle Scholar
  28. 28.
    D. Bahulayan, S.K. Das, J. Iqbal, J. Org. Chem. 68, 14 (2003)CrossRefGoogle Scholar
  29. 29.
    L. Nagarapu, R. Bantu, R. Puttireddy, Appl. Catal. A 332, 2 (2007)CrossRefGoogle Scholar
  30. 30.
    S. Ray, P. Das, B. Banerjee, A. Bhaumik, C. Mukhopadhyay, ChemPlusChem 80, 4 (2015)CrossRefGoogle Scholar
  31. 31.
    G.S. Foo, F. Polo-Garzon, V. Fung, D.-E. Jiang, S.H. Overbury, Z. Wu, ACS Catal. 7, 7 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Organic Chemistry, Faculty of ChemistryUniversity of KashanKashanIslamic Republic of Iran

Personalised recommendations