Synthesis of a reticular porous MoS2/g-C3N4 heterojunction with enhanced visible light efficiency in photocatalytic degradation of RhB

  • Hong Gao
  • Yang Liu
  • Lijun Wang
  • Jianchao Zhu
  • Shengwang Gao
  • Xunfeng XiaEmail author


A series of MoS2/g-C3N4 heterojunction photocatalysts were successfully constructed by a facile impregnation and calcination method. The obtained MoS2/g-C3N4 composites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet–visible diffuse reflection spectroscopy, Brunauer–Emmett–Teller and photoluminescence spectroscopy. The photocatalytic activities of MoS2/g-C3N4 heterojunctions were evaluated under visible light irradiation by Rhodamine B (RhB). Results showed the MoS2/g-C3N4 composites could significantly improve the photocatalytic performance in comparison with pure g-C3N4. The optimum photocatalytic efficiency of 1.0%-MC-4 sample was about 7.7 times higher than that of g-C3N4 for RhB degradation. In addition, 1.0%-MC-4 also retained excellent recyclability and stability, the degradation rate of 86.1% was reached after five recycles. By further research, the enhanced photocatalytic mechanism was proposed based on the trapping experiments and electron spin resonance (ESR) experiments, and the photodegradation was dominant by the h+ and ·O2 oxidation process. This work is also of significant interest for environmental pollutants degradation and solar energy conversion in large scale applications.


MoS2/g-C3N4 Impregnation and calcination method Photocatalytic activity Mechanism 



This work was financially supported by the National Science and Technology Support Program (No. 2014BAL02B02).

Supplementary material

11164_2019_3815_MOESM1_ESM.docx (498 kb)
Supplementary material 1 (DOCX 498 kb)


  1. 1.
    C.S. Xing, Z.D. Wu, D.L. Jiang, M. Chen, J. Colloid Interface Sci. 433, 9 (2014)CrossRefGoogle Scholar
  2. 2.
    G. Liu, P. Niu, C.H. Sun, S.C. Smith, Z.G. Chen, G.Q. Lu, H.M. Cheng, J. Am. Chem. Soc. 132, 11642 (2010)CrossRefGoogle Scholar
  3. 3.
    S.F. Chen, Y.F. Hu, S.G. Meng, X.L. Fu, Appl. Catal. B Environ. 150–151, 564 (2014)CrossRefGoogle Scholar
  4. 4.
    L.B. Jiang, X.Z. Yuan, G.G. Zeng, Z.B. Wu, J. Liang, X.H. Chen, L.J. Leng, H. Wang, H. Wang, Appl. Catal. B Environ. 221, 715 (2018)CrossRefGoogle Scholar
  5. 5.
    W.J. Zhou, Z.Y. Yin, Y.P. Du, X. Huang, Z.Y. Zeng, Z.X. Fan, H. Liu, J.Y. Wang, H. Zhang, Small 9, 140 (2013)CrossRefGoogle Scholar
  6. 6.
    L.B. Jiang, X.Z. Yuan, Y. Pan, J. Liang, G.M. Zeng, Z.B. Wu, H. Wang, Appl. Catal. B Environ. 217, 388 (2017)CrossRefGoogle Scholar
  7. 7.
    G. Liu, L.Z. Wang, H.G. Yang, H.M. Cheng, G.Q. Lu, J. Mater. Chem. 20, 831 (2010)CrossRefGoogle Scholar
  8. 8.
    Q. Li, N. Zhang, Y. Yang, G.Z. Wang, D.H.L. Ng, Langmuir 30, 8965 (2014)CrossRefGoogle Scholar
  9. 9.
    J.M. Hu, W.D. Cheng, S.P. Huang, D.S. Wu, Z. Xie, Appl. Phys. Lett. 89, 261117 (2006)CrossRefGoogle Scholar
  10. 10.
    X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8, 76 (2009)CrossRefGoogle Scholar
  11. 11.
    Y.P. Li, W.P. Qu, L.Y. Huang, P.P. Li, F. Zhang, D. Yuan, Q. Wang, H. Xu, H.M. Li, J. Inorg. Organomet. Polym. Mater. 27, 1 (2017)Google Scholar
  12. 12.
    S. Martha, A. Nashim, K.M. Parida, J. Mater Chem. A 1, 7816 (2013)CrossRefGoogle Scholar
  13. 13.
    S. Patnaik, S. Martha, K.M. Parida, RSC Adv. 6, 46929 (2016)CrossRefGoogle Scholar
  14. 14.
    J.S. Zhang, F.S. Guo, X.C. Wang, Adv. Funct. Mater. 23, 3008 (2013)CrossRefGoogle Scholar
  15. 15.
    B.C. Zhu, P.F. Xia, W.K. Ho, J.G. Yu, Appl. Surf. Sci. 344, 188 (2015)CrossRefGoogle Scholar
  16. 16.
    J.H. Li, B. Shen, Z.H. Hong, B.Z. Lin, B.F. Gao, Y.L. Chen, Chem. Commun. 48, 12017 (2012)CrossRefGoogle Scholar
  17. 17.
    Z.A. Lan, G.G. Zhang, X.C. Wang, Appl. Catal. B Environ. 192, 116 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Jin, Q. Liang, C.Y. Ding, Z.Y. Li, S. Xu, J. Alloys Compd. 691, 763 (2017)CrossRefGoogle Scholar
  19. 19.
    W.L. Shi, F. Guo, J.B. Chen, G.B. Che, X. Lin, J. Alloys Compd. 612, 143 (2014)CrossRefGoogle Scholar
  20. 20.
    S.A. Ansari, M.H. Cho, Sci. Rep. 7, 43055 (2017)CrossRefGoogle Scholar
  21. 21.
    L. Shi, W. Ding, S.P. Yang, Z. He, S.Q. Liu, J. Hazard. Mater. 347, 431 (2018)CrossRefGoogle Scholar
  22. 22.
    X.J. Lu, Y.L. Jin, X.Y. Zhang, G.Q. Xu, D.M. Wang, J. Lv, Z.X. Zheng, Y.C. Wu, Dalton Trans. 45, 15406 (2016)CrossRefGoogle Scholar
  23. 23.
    Y.M. Tian, L. Ge, K.Y. Wang, Y.S. Chai, Mater. Charact. 87, 70 (2013)CrossRefGoogle Scholar
  24. 24.
    J. Li, E.Z. Liu, Y.N. Ma, X.Y. Hu, J. Wan, L. Sun, J. Fan, Appl. Surf. Sci. 364, 694 (2016)CrossRefGoogle Scholar
  25. 25.
    W.C. Peng, X.Y. Li, Catal. Commun. 49, 63 (2014)CrossRefGoogle Scholar
  26. 26.
    M.L. Li, L.X. Zhang, X.Q. Fan, M.Y. Wu, Y.Y. Du, M. Wang, Q.L. Kong, L.L. Zhang, J.L. Shi, Appl. Catal. B Environ. 190, 36 (2016)CrossRefGoogle Scholar
  27. 27.
    J. Yan, Z.G. Chen, H.Y. Ji, Z. Liu, X. Wang, Y.G. Xu, X.J. She, L.Y. Huang, L. Xu, H. Xu, H. Li, Chem. Eur. J. 22, 4764 (2016)CrossRefGoogle Scholar
  28. 28.
    L. Ge, C.C. Han, X.L. Xiao, L.L. Guo, Int. J. Hydrog. Energy 38, 6960 (2013)CrossRefGoogle Scholar
  29. 29.
    X.X. Jin, X.Q. Fan, J.J. Tian, R.L. Cheng, M.L. Li, L.X. Zhang, RSC Adv. 6, 52611 (2016)CrossRefGoogle Scholar
  30. 30.
    Y.Z. Cao, Q. Li, W. Wang, RSC Adv. 7, 6131 (2017)CrossRefGoogle Scholar
  31. 31.
    M. Wang, P. Ju, Y. Zhao, J.J. Li, X.X. Han, Z.M. Hao, N. J. Chem. 42, 910 (2018)CrossRefGoogle Scholar
  32. 32.
    J. Yin, Z.G. Zou, J.H. Ye, J. Phys. Chem. B 34, 4936 (2003)CrossRefGoogle Scholar
  33. 33.
    B. Weng, X. Zhang, N. Zhang, Z.R. Tang, Y.J. Xu, Langmuir 31, 4314 (2015)CrossRefGoogle Scholar
  34. 34.
    Q.J. Xiang, J.G. Yu, M. Jaroniec, J. Phys. Chem. C 115, 7355 (2011)CrossRefGoogle Scholar
  35. 35.
    Y.B. Li, H.M. Zhang, P.R. Liu, D. Wang, Y. Li, H.J. Zhao, Small 9, 3336 (2013)Google Scholar
  36. 36.
    Y. Hou, Z.H. Wen, S.M. Cui, X.R. Guo, J.H. Chen, Adv. Mater. 25, 6291 (2013)CrossRefGoogle Scholar
  37. 37.
    D.J. Martin, K.P. Qiu, S.A. Shevlin, A.D. Handoko, X.W. Chen, Z.X. Guo, J.W. Tang, Angew. Chem. Int. Ed. 53, 9240 (2014)CrossRefGoogle Scholar
  38. 38.
    V.O. Koroteev, L.G. Bulusheva, I.P. Asanov, E.V. Shlyakhova, D.V. Vyalikh, A.V. Okotrub, J. Phys. Chem. C 115, 21199 (2011)CrossRefGoogle Scholar
  39. 39.
    X. Guo, G.L. Cao, F. Ding, X.Y. Li, S.Y. Zhen, Y.F. Xue, Y.M. Yan, T. Liu, K.N. Sun, J. Mater Chem. A 3, 5041 (2015)CrossRefGoogle Scholar
  40. 40.
    H. Vrubel, D. Merki, X.L. Hu, Energy Environ. Sci. 5, 6136 (2012)CrossRefGoogle Scholar
  41. 41.
    L.X. Meng, D.W. Rao, W. Tian, F.R. Cao, X.H. Yan, L. Li, Angew. Chem. Int. Ed. 57, 16882 (2018)CrossRefGoogle Scholar
  42. 42.
    K. Li, Z. Huang, X. Zeng, B. Huang, S. Gao, J. Lu, A.C.S. Appl, Mater. Interfaces 9(13), 11577 (2017)CrossRefGoogle Scholar
  43. 43.
    Z. Jiang, D. Liu, D. Jiang, W. Wei, K. Qian, M. Chen, J. Xie, Dalton Trans. 43, 13792 (2014)CrossRefGoogle Scholar
  44. 44.
    M. Ahmadi, H.R. Motlagh, N. Jaalarzadeh, A. Mostoufi, R. Saeedi, G. Barzegar, S. Jorfi, J. Environ. Manag. 186, 55 (2017)CrossRefGoogle Scholar
  45. 45.
    M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Res. 44, 2997 (2010)CrossRefGoogle Scholar
  46. 46.
    L.X. Hu, H. Yuan, L.P. Zou, F.Y. Chen, X. Hu, Appl. Surf. Sci. 355, 706 (2015)CrossRefGoogle Scholar
  47. 47.
    T. Soltani, M.H. Entezari, Chem. Eng. J. 223, 145 (2013)CrossRefGoogle Scholar
  48. 48.
    M. Sökmen, A. Özkan, J. Photochem. Photobiol. A 147, 77 (2002)CrossRefGoogle Scholar
  49. 49.
    C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, J.M. Herrmann, J. Photochem. Photobiol. A 158, 27 (2003)CrossRefGoogle Scholar
  50. 50.
    D.E. Santiago, J. Araña, O. González-Díaz, M.E. Alemán-Dominguez, A.C. Acosta-Dacal, C. Fernandez-Rodríguez, J. Pérez-Peña, J.M. Doña-Rodríguez, Appl. Catal. B Environ. 156–157, 284 (2014)CrossRefGoogle Scholar
  51. 51.
    P.S. Yap, T.T. Lim, Appl Catal. B Environ. 101, 709 (2011)CrossRefGoogle Scholar
  52. 52.
    K.S. Yalap, I.A. Balcioglu, J. Adv. Oxid. Technol. 12, 134 (2008)Google Scholar
  53. 53.
    S.J. Stangroom, C.L. MacLeod, J.N. Lester, Water Res. 32, 623 (1998)CrossRefGoogle Scholar
  54. 54.
    Q. Zhao, L. Feng, X. Cheng, C. Chen, L.Q. Zhang, Water Sci. Technol. 67, 1605 (2013)CrossRefGoogle Scholar
  55. 55.
    X. Ding, K. Zhao, L.Z. Zhang, Environ. Sci. Technol. 48, 5823 (2014)CrossRefGoogle Scholar
  56. 56.
    H.W. Huang, X.W. Li, J.J. Wang, F. Dong, P.K. Chu, T.R. Zhang, Y.H. Zhang, ACS Catal. 5, 4090 (2015)Google Scholar
  57. 57.
    Y.Z. Hong, Y.H. Jiang, C.S. Li, W.Q. Fan, X. Yan, M. Yan, W.D. Shi, Appl. Catal. B Environ. 180, 663 (2016)CrossRefGoogle Scholar
  58. 58.
    Z. Wu, J. Liang, X. Chen, L. Leng, H. Wang, Appl. Catal. B Environ. 221, 715 (2017)Google Scholar
  59. 59.
    G.T. Li, K.H. Wang, X.W. Zhang, C. Hu, J.C. Yu, R.C.Y. Chen, P.K. Wong, Chemosphere 76, 1185 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Hong Gao
    • 2
  • Yang Liu
    • 1
    • 2
  • Lijun Wang
    • 1
  • Jianchao Zhu
    • 1
  • Shengwang Gao
    • 1
  • Xunfeng Xia
    • 1
    Email author
  1. 1.Research Center for Rural Environmental ProtectionChinese Research Academy of Environmental SciencesBeijingChina
  2. 2.Faculty of Civil Engineering and ArchitecturalKunming University of Science and TechnologyKunmingChina

Personalised recommendations