Advertisement

Design and synthesis ethynyl ferrocene-based multifunctional chemosensors for fluoride anion

  • Hongyuan Fu
  • Yizhong Shi
  • Jian You
  • Tingting Hao
  • Tao WangEmail author
Article
  • 27 Downloads

Abstract

To exploit novel ferrocene-based small molecules with long conjugated structures as visible and electrochemical multichannel chemosensors, four conjugated ferrocene ethynyl semicarbazide derivatives (Fc-X-An) were synthesized via the Sonogashira coupling reaction. The synthesized Fc-X-Ans are 2-(4-(ferrocenylethynyl)benzylidene) hydrazine-1-carboxamide (Fc-Ph-An), 2-((5-(ferrocenylethynyl)thiophen-2-yl)methylene)hydrazine-1-carboxamide (Fc-Thie-An), 2-((9-ethyl-6-(ferrocenylethynyl)-9H-carbazol-3-yl) methylene)hydrazine-1-carboxamide (Fc-Cz-An) and 2-((10-ethyl-7-(ferrocenylethynyl)-10H-phenothiazin-3-yl) methylene)hydrazine-1-carboxamide (Fc-PTZ-An). The recognition abilities of the semicarbazide derivative Fc-X-Ans for several anions were evaluated from visible absorption spectra, 1H NMR, and electrochemical technique.

Keywords

Synthesis Semicarbazide Ethynl ferrocene Conjugated structure Chemosensor 

Notes

Acknowledgements

The authors thank the National Key Program of China (Project Grant No. 2017YFB0307800) and Science and Technology Planning Project of Guangdong Province, China (Project Grant No. 2017B090911002) for financial support. We also thank the Beijing University of Chemical Technology CHEMCLOUDCOMPUTING Platform for support with calculations.

Supplementary material

11164_2019_3808_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1569 kb)

References

  1. 1.
    A. Thakur, D. Mandal, S. Ghosh, J. Organomet. Chem. 726, 71 (2013)Google Scholar
  2. 2.
    D.P. Cormode, A.J. Evans, J.J. Davis, P.D. Beer, Dalton Trans. 39, 28 (2010)Google Scholar
  3. 3.
    L. Ma, L. Wang, Q. Tan, H. Yu, J. Huo, Z. Ma, H. Hu, Z. Chen, Electrochim. Acta 54, 23 (2009)Google Scholar
  4. 4.
    T. Anand, G. Sivaraman, M. Iniya, A. Siva, D. Chellappa, Anal. Chim. Acta 876, 1 (2015)Google Scholar
  5. 5.
    V.K. Gujuluva Gangatharan, K. Mookkandi Palsamy, S. Gandhi, A. Jamespandi, A. Kandasamy, T. Arunachalam, A. Shenmuganarayanan, S. Balasubramaniyam, R. Jegathalaprathaban, Sens. Actuators B Chem. 255, 3235 (2018)Google Scholar
  6. 6.
    M. Iniya, B. Vidya, T. Anand, G. Sivaraman, D. Jeyanthi, K. Krishnaveni, D. Chellappa, ChemistrySelect 3, 4 (2018)Google Scholar
  7. 7.
    G.G.V. Kumar, M.P. Kesavan, G. Sivaraman, J. Rajesh, Sens. Actuators B Chem. 255, 3194 (2018)Google Scholar
  8. 8.
    M.D.C. Gonzalez, F. Oton, R.A. Orenes, A. Espinosa, A. Tarraga, P. Molina, Organometallics 33, 11 (2014)Google Scholar
  9. 9.
    P. Molina, A. Tarraga, A. Caballero, Eur. J. Inorg. Chem. 22, 3401 (2008)Google Scholar
  10. 10.
    M. Alfonso, A. Espinosa, A. Tarraga, P. Molina, Chem. Commun. (Cambridge, UK) 48, 54 (2012)Google Scholar
  11. 11.
    M.D.C. Gonzalez, F. Oton, A. Espinosa, A. Tarraga, P. Molina, Org. Biomol. Chem. 13, 5 (2015)Google Scholar
  12. 12.
    Q. Lu, J. Hou, J. Wang, B. Xu, J. Zhang, X. Yu, Chin. J. Chem. 31, 5 (2013)Google Scholar
  13. 13.
    M. Maniyazagan, R. Mariadasse, M. Nachiappan, J. Jeyakanthan, N.K. Lokanath, S. Naveen, G. Sivaraman, P. Muthuraja, P. Manisankar, T. Stalin, Sens. Actuators B Chem. 254, 795 (2018)Google Scholar
  14. 14.
    P. Chinna Ayya Swamy, J. Shanmugapriya, S. Singaravadivel, G. Sivaraman, D. Chellappa, ACS Omega 3, 12341 (2018)Google Scholar
  15. 15.
    D. Paul, P.N. Chatterjee, ChemistrySelect 3, 43 (2018)Google Scholar
  16. 16.
    S.O. Raja, G. Sivaraman, A. Mukherjee, C. Duraisamy, A. Gulyani, ChemistrySelect 2, 17 (2017)Google Scholar
  17. 17.
    C. Li, L. Wang, H. Yu, L. Ma, Z. Chen, Q. Wu, W.A. Amer, J. Organomet. Chem. 726, 32 (2013)Google Scholar
  18. 18.
    G. Cafeo, G. Gattuso, F.H. Kohnke, G. Papanikolaou, A. Profumo, C. Rosano, Chem. Eur. J. 20, 6 (2014)Google Scholar
  19. 19.
    S. Chakraborty, M. Arunachalam, R. Dutta, P. Ghosh, RSC Adv. 5, 59 (2015)Google Scholar
  20. 20.
    S.O. Kang, R.A. Begum, K. Bowmna James, Angew. Chem. Int. Ed. 45, 47 (2006)Google Scholar
  21. 21.
    N.G. White, A.R. Colaco, I. Marques, V. Felix, P.D. Beer, Org. Biomol. Chem. 12, 27 (2014)Google Scholar
  22. 22.
    V. Blazek Bregovic, N. Basaric, K. Mlinaric-Majerski, Coord. Chem. Rev. 295, 80 (2015)Google Scholar
  23. 23.
    E.M. Boyle, S. Comby, J.K. Molloy, T. Gunnlaugsson, J. Org. Chem. 78, 17 (2013)Google Scholar
  24. 24.
    M. Emami Khansari, K.D. Wallace, M.A. Hossain, Tetrahedron Lett. 55, 2 (2014)Google Scholar
  25. 25.
    M.M.M. Raposo, B. Garcia-Acosta, T. Abalos, P. Calero, R. Martinez-Manez, J.V. Ros-Lis, J. Soto, J. Org. Chem. 75, 9 (2010)Google Scholar
  26. 26.
    P. Molina, A. Tarraga, F. Oton, Org. Biomol. Chem. 10, 9 (2012)Google Scholar
  27. 27.
    M. Alfonso, A. Tarraga, P. Molina, Inorg. Chem. 52, 13 (2013)Google Scholar
  28. 28.
    F. Figueira, A.S.F. Farinha, P.V. Muteto, M.D. Polêto, H. Verli, M.T.S.R. Gomes, A.C. Tomé, J.A.S. Cavaleiro, J.P.C. Tomé, Chem. Commun. 52, 10 (2016)Google Scholar
  29. 29.
    N.H. Evans, C.J. Serpell, P.D. Beer, Chem. Commun. (Cambridge, UK) 47, 31 (2011)Google Scholar
  30. 30.
    H. Zhang, J. Hu, D.-H. Qu, Org. Lett. 14, 9 (2012)Google Scholar
  31. 31.
    H. Fang, Y. Gan, S. Wang, T. Tao, Inorg. Chem. Commun. 95, 1 (2018)Google Scholar
  32. 32.
    E. Ramachandran, S.A.A. Vandarkuzhali, G. Sivaraman, R. Dhamodharan, Chem. A Eur. J. 24, 43 (2018)Google Scholar
  33. 33.
    S.J. Ranee, G. Sivaraman, A.M. Pushpalatha, S. Muthusubramanian, Sens. Actuators B Chem. 255, 630 (2018)Google Scholar
  34. 34.
    P. Sakthivel, K. Sekar, G. Sivaraman, S. Singaravadivel, New J. Chem. 42, 14 (2018)Google Scholar
  35. 35.
    J. Shanmugapriya, K. Rajaguru, G. Sivaraman, S. Muthusubramanian, N. Bhuvanesh, RSC Adv. 6, 89 (2016)Google Scholar
  36. 36.
    Q.-X. Liu, Z.-L. Hu, Z.-X. Zhao, Tetrahedron 74, 46 (2018)Google Scholar
  37. 37.
    Y. Feng, X. Li, H. Ma, Z. Zhang, M. Zhang, S. Hao, Dyes Pigments 153, 307 (2018)Google Scholar
  38. 38.
    B. Vidya, G. Sivaraman, R.V. Sumesh, D. Chellappa, ChemistrySelect 1, 13 (2016)Google Scholar
  39. 39.
    G.G. Vinoth Kumar, M.P. Kesavan, A. Tamilselvi, G. Rajagopal, J.D. Raja, K. Sakthipandi, J. Rajesh, G. Sivaraman, Sens. Actuators B Chem. 273, 305 (2018)Google Scholar
  40. 40.
    Y. Qu, Y. Wu, Y. Gao, S. Qu, L. Yang, J. Hua, Sens. Actuators B Chem. 197, 50 (2014)Google Scholar
  41. 41.
    G. Sivaraman, D. Chellappa, J. Mater. Chem. B 1, 42 (2013)Google Scholar
  42. 42.
    G. Sivaraman, M. Iniya, T. Anand, N.G. Kotla, O. Sunnapu, S. Singaravadivel, A. Gulyani, D. Chellappa, Coord. Chem. Rev. 357, 50 (2018)Google Scholar
  43. 43.
    O. Sunnapu, N.G. Kotla, B. Maddiboyina, S. Marepally, J. Shanmugapriya, K. Sekar, S. Singaravadivel, G. Sivaraman, ChemistrySelect 2, 25 (2017)Google Scholar
  44. 44.
    S.A.A. Vandarkuzhali, S. Natarajan, S. Jeyabalan, G. Sivaraman, S. Singaravadivel, S. Muthusubramanian, B. Viswanathan, ACS Omega 3, 10 (2018)Google Scholar
  45. 45.
    Y. Liu, N. Xiang, X. Feng, P. Shen, W. Zhou, C. Weng, B. Zhao, S. Tan, Chem. Commun. 18, 2499 (2009)Google Scholar
  46. 46.
    Z. Yang, N. Zhao, Y. Sun, F. Miao, Y. Liu, X. Liu, Y. Zhang, W. Ai, G. Song, X. Shen, X. Yu, J. Sun, W.Y. Wong, Chem. Commun. 48, 28 (2012)Google Scholar
  47. 47.
    Y. Hua, S. Chang, D. Huang, X. Zhou, X. Zhu, J. Zhao, T. Chen, W.Y. Wong, W.K. Wong, Chem. Mater. 25, 10 (2013)Google Scholar
  48. 48.
    M. Rosenblum, N. Brawn, J. Papenmeier, M. Applebaum, J. Organomet. Chem. 6, 2 (1966)Google Scholar
  49. 49.
    Y. Shiraishi, H. Maehara, T. Hirai, Org. Biomol. Chem. 7, 10 (2009)Google Scholar
  50. 50.
    H.A. Benesi, J.H. Hildebrand, J. Am. Chem. Soc. 71, 8 (1949)Google Scholar
  51. 51.
    K. Heinze, H. Lang, Organometallics 32, 20 (2013)Google Scholar
  52. 52.
    P. Molina, A. Tarraga, M. Alfonso, Dalton Trans. 43, 1 (2014)Google Scholar
  53. 53.
    A. Okudan, S. Erdemir, O. Kocyigit, J. Mol. Struct. 1048, 392 (2013)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Hongyuan Fu
    • 1
    • 2
  • Yizhong Shi
    • 3
  • Jian You
    • 1
    • 2
  • Tingting Hao
    • 1
    • 2
  • Tao Wang
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Chemical Resource Engineering, College of ScienceBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  2. 2.Department of Organic Chemistry, College of ScienceBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  3. 3.Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & DevicesSoochow UniversitySuzhouPeople’s Republic of China

Personalised recommendations