Reduced CuFe2O4 for catalytic oxidation of methyl orange by activation of persulfate: performances and mechanisms

  • Qingdong Qin
  • Jian Xu
  • Tian Sun
  • Yan XuEmail author


Bimetallic Fe0-based catalysts have been shown to be effective heterogeneous catalysts for elimination of organic pollutants by activating persulfate (PS). In this study, copper ferrite (CuFe2O4) was isothermally treated under a reducing atmosphere in order to load Fe0/Cu0 bimetallic nanoparticles on the surface of CuFe2O4. The reduced CuFe2O4 was then used as a magnetically separable catalyst for PS activation to remove methyl orange (MO) from aqueous solution. The experimental data followed well the pseudo-first-order kinetic model, and the reaction rate of the reduced CuFe2O4/PS system was 5.6 times greater than that of the CuFe2O4/PS system. The key operating parameters such as PS concentration, catalyst dosage and solution pH were investigated. Catalyst stability of reduced CuFe2O4 was also tested by consecutive reuse cycles. Quenching experiments and electron spin resonance (ESR) spectroscopy revealed that the main reactive species was sulfate radical (SO 4 ·− ). Intermediate products of MO degradation were determined by high performance liquid chromatography coupled with a high-resolution hybrid quadrupole time-of-flight mass spectrometer (LC-Q-TOF–MS) and the MO degradation pathways were proposed. Based on the analysis of catalytic activity and surface characteristics of reduced CuFe2O4, the enhanced reactivity of reduced CuFe2O4 was mainly attributed to rapid corrosion of Fe0/Cu0 bimetallic nanoparticles by PS. These findings illustrated that the reduced CuFe2O4/PS system may be an efficient technology for MO removal from wastewaters.


Copper ferrite Methyl orange Persulfate Sulfate radical Catalytic oxidation 



This work was supported by the National Natural Science Foundation of China [41671468 and 51408119], Fundamental Research Funds for the Central Universities and State Key Laboratory of Pollution Control and Resource Reuse (PCRRF16020). The authors would like to thank the Analytical Center of NIGLAS for making this study possible by making laboratory facilities available. The authors are grateful to Dr. Nanyang Yu and Dr. Si Wei at Nanjing University for providing the LC-Q-TOF–MS method.

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest to declare.


  1. 1.
    P. Verma, S.K. Samanta, Environ. Chem. Lett. 16, 969 (2018)CrossRefGoogle Scholar
  2. 2.
    J.L. Wang, L.J. Xu, Crit. Rev. Environ. Sci. Technol. 42, 251 (2012)CrossRefGoogle Scholar
  3. 3.
    O. Acisli, A. Khataee, R.D.C. Soltani, S. Karaca, Ultrason. Sonochem. 35, 210 (2017)CrossRefGoogle Scholar
  4. 4.
    P.D. Hu, M.C. Long, Appl. Catal. B Environ. 181, 103 (2016)CrossRefGoogle Scholar
  5. 5.
    F. Ghanbari, M. Moradi, Chem. Eng. J. 310, 41 (2017)CrossRefGoogle Scholar
  6. 6.
    I.A. Ike, K.G. Linden, J.D. Orbell, M. Duke, Chem. Eng. J. 338, 651 (2018)CrossRefGoogle Scholar
  7. 7.
    J.L. Wang, S.Z. Wang, Chem. Eng. J. 334, 1502 (2018)CrossRefGoogle Scholar
  8. 8.
    W.D. Oh, T.T. Lim, Chem. Eng. J. 358, 110 (2019)CrossRefGoogle Scholar
  9. 9.
    T. Zhang, Y. Chen, Y.R. Wang, J. Le Roux, Y. Yang, J.P. Croue, Environ. Sci. Technol. 48, 5868 (2014)CrossRefGoogle Scholar
  10. 10.
    Y.L. Wu, Y.H. Shi, H.C. Chen, J.F. Zhao, W.B. Dong, Process Saf. Environ. Protect. 116, 468 (2018)CrossRefGoogle Scholar
  11. 11.
    J. Zhang, M.Y. Chen, L. Zhu, RSC Adv. 6, 758 (2016)CrossRefGoogle Scholar
  12. 12.
    X.L. Zhang, M.B. Feng, R.J. Qu, H. Liu, L.S. Wang, Z.Y. Wang, Chem. Eng. J. 301, 1 (2016)CrossRefGoogle Scholar
  13. 13.
    C. Kim, J.Y. Ahn, T.Y. Kim, W.S. Shin, I. Hwang, Environ. Sci. Technol. 52, 3625 (2018)CrossRefGoogle Scholar
  14. 14.
    S.Y. Oh, S.G. Kang, P.C. Chiu, Sci. Total Environ. 408, 3464 (2010)CrossRefGoogle Scholar
  15. 15.
    C.A.L. Graca, L.T.N. Fugita, A.C. de Velosa, A. Teixeira, Environ. Sci. Pollut. Res. 25, 5474 (2018)CrossRefGoogle Scholar
  16. 16.
    P. Zhou, J. Zhang, Y.L. Zhang, G.C. Zhang, W.S. Li, C.M. Wei, J. Liang, Y. Liu, S.H. Shu, J. Hazard. Mater. 344, 1209 (2018)CrossRefGoogle Scholar
  17. 17.
    C. Chen, Y.J. Han, J. Guo, L.X. Zhou, Y.Q. Lan, J. Taiwan Inst. Chem. Eng. 88, 169 (2018)CrossRefGoogle Scholar
  18. 18.
    T.F. Ren, S.Y. Yang, Y.T. Jiang, X.R. Sun, Y.X. Zhang, Chem. Eng. J. 348, 350 (2018)CrossRefGoogle Scholar
  19. 19.
    N.S. Shah, J.A. Khan, M. Sayed, Z.U. Khan, H.S. Ali, B. Murtaza, H.M. Khan, M. Imran, N. Muhammad, Chem. Eng. J. 356, 199 (2019)CrossRefGoogle Scholar
  20. 20.
    H.X. Li, J.Q. Wan, Y.W. Ma, Y. Wang, M.Z. Huang, Chem. Eng. J. 237, 487 (2014)CrossRefGoogle Scholar
  21. 21.
    R. Sharma, S. Bansal, S. Singhal, RSC Adv. 5, 6006 (2015)CrossRefGoogle Scholar
  22. 22.
    T. Zhou, X.L. Zou, J. Mao, X.H. Wu, Appl. Catal. B Environ. 185, 31 (2016)CrossRefGoogle Scholar
  23. 23.
    Y.W. Pan, Y. Zhang, M.H. Zhou, J.J. Cai, Y.S. Tian, Chem. Eng. J. 361, 908 (2019)CrossRefGoogle Scholar
  24. 24.
    M.P. Rayaroth, C.S. Lee, U.K. Aravind, C.T. Aravindakumar, Y.S. Chang, Chem. Eng. J. 315, 426 (2017)CrossRefGoogle Scholar
  25. 25.
    M.B. Gu, U. Farooq, S.G. Lu, X. Zhang, Z.F. Qiu, Q. Sui, J. Hazard. Mater. 349, 35 (2018)CrossRefGoogle Scholar
  26. 26.
    S.H. Wu, H.J. He, X. Li, C.P. Yang, G.M. Zeng, B. Wu, S.Y. He, L. Lu, Chem. Eng. J. 341, 126 (2018)CrossRefGoogle Scholar
  27. 27.
    Q.Q. Ji, J. Li, Z.K. Xiong, B. Lai, Chemosphere 172, 10 (2017)CrossRefGoogle Scholar
  28. 28.
    C.X. Wang, J.Q. Wan, Y.W. Ma, Y. Wang, Res. Chem. Intermed. 42, 481 (2016)CrossRefGoogle Scholar
  29. 29.
    Q.D. Qin, Y.H. Liu, X.C. Li, T. Sun, Y. Xu, RSC Adv. 8, 1071 (2018)CrossRefGoogle Scholar
  30. 30.
    T. Zhang, H.B. Zhu, J.P. Croue, Environ. Sci. Technol. 47, 2784 (2013)CrossRefGoogle Scholar
  31. 31.
    M.T. Qiao, X.F. Lei, Y. Ma, L.D. Tian, K.H. Su, Q.Y. Zhang, Chem. Eng. J. 304, 552 (2016)CrossRefGoogle Scholar
  32. 32.
    Y.B. Ding, L.H. Zhu, N. Wang, H.Q. Tang, Appl. Catal. B Environ. 129, 153 (2013)CrossRefGoogle Scholar
  33. 33.
    Y. Feng, D.L. Wu, Y. Deng, T. Zhang, K.M. Shih, Environ. Sci. Technol. 50, 3119 (2016)CrossRefGoogle Scholar
  34. 34.
    J.C. Yan, M. Lei, L.H. Zhu, M.N. Anjum, J. Zou, H.Q. Tang, J. Hazard. Mater. 186, 1398 (2011)CrossRefGoogle Scholar
  35. 35.
    D.H. Ding, C. Liu, Y.F. Ji, Q. Yang, L.L. Chen, C.L. Jiang, T.M. Cai, Chem. Eng. J. 308, 330 (2017)CrossRefGoogle Scholar
  36. 36.
    S.R. Kanel, B. Manning, L. Charlet, H. Choi, Environ. Sci. Technol. 39, 1291 (2005)CrossRefGoogle Scholar
  37. 37.
    Y. Lei, C.S. Chen, Y.J. Tu, Y.H. Huang, H. Zhang, Environ. Sci. Technol. 49, 6838 (2015)CrossRefGoogle Scholar
  38. 38.
    I. Hussain, Y.Q. Zhang, S.B. Huang, X.Z. Du, Chem. Eng. J. 203, 269 (2012)CrossRefGoogle Scholar
  39. 39.
    M.H. Nie, C.X. Yan, M. Li, X.N. Wang, W.L. Bi, W.B. Dong, Chem. Eng. J. 279, 507 (2015)CrossRefGoogle Scholar
  40. 40.
    G.P. Anipsitakis, D.D. Dionysiou, Environ. Sci. Technol. 38, 3705 (2004)CrossRefGoogle Scholar
  41. 41.
    G.S. Timmins, K.J. Liu, E.J.H. Bechara, Y. Kotake, H.M. Swartz, Free Radic. Biol. Med. 27, 329 (1999)CrossRefGoogle Scholar
  42. 42.
    X.G. Duan, H.Q. Sun, J. Kang, Y.X. Wang, S. Indrawirawan, S.B. Wang, ACS Catal. 5, 4629 (2015)CrossRefGoogle Scholar
  43. 43.
    S. Luo, Z.S. Wei, D.D. Dionysiou, R. Spinney, W.P. Hu, L.Y. Chai, Z.H. Yang, T.T. Ye, R.Y. Xiao, Chem. Eng. J. 327, 1056 (2017)CrossRefGoogle Scholar
  44. 44.
    N. Nagar, V. Devra, J. Environ. Chem. Eng. 5, 5793 (2017)CrossRefGoogle Scholar
  45. 45.
    X.Y. Chen, J.W. Chen, X.L. Qiao, D.G. Wang, X.Y. Cai, Appl. Catal. B Environ. 80, 116 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Civil EngineeringSoutheast UniversityNanjingChina

Personalised recommendations