In vitro biological evaluations of Fe3O4 compared with core–shell structures of chitosan-coated Fe3O4 and polyacrylic acid-coated Fe3O4 nanoparticles

  • Sheida Lotfi
  • Ali Bahari
  • Soleiman MahjoubEmail author


Today the use of magnetic nanoparticles (MNPs) is widely investigated because of their biocompatibility and nontoxicity. The objective of this study was to synthesis a uniform superparamagnetic Fe3O4, the core–shell structures of chitosan-coated Fe3O4 (cc/Fe3O4) and polyacrylic acid-coated Fe3O4 (pc/Fe3O4) nanoparticles using an in situ co-precipitation process for evaluation of biomedical applications. To structurally characterize the synthesized nanoparticles, morphological and magnetic properties, Fourier transform infrared, X-ray diffraction, transmission electron microscopy, dynamic light scattering and vibrating sample magnetometry studies were employed. Our results showed that Fe3O4, cc/Fe3O4 and pc/Fe3O4 nanoparticles possess an average mean diameter of 10, 15 and 11 nm (dry samples) per Scherrer's equation in a dry state with saturation magnetization (MS) values of 70.64, 38.65 and 23.53 emu/g, respectively. The cytotoxicity of nanoparticles was evaluated by MTT assay using breast cancer (MCF7) and human normal skin (fibroblast) cell lines. Both of the two core–shell structures did not show toxicity on the fibroblast cell line even after 24 and 48 h. The viability rate of the bare Fe3O4 MNPs on the MCF7 cell line was significantly less than two the coated nanoparticles. MTT assays demonstrated that core–shell nanoparticles have less cytotoxicity than bare Fe3O4 MNPs (in 100 μg/ml during 24 h, the viability of bare Fe3O4 MNPs, cc/Fe3O4 and pc/Fe3O4 nanoparticles was 68.01%, 85.91%, and 88.13%, respectively). Moreover, hemolysis assay was performed to measure cytotoxicity of the nanoparticles on red blood cells (RBCs). The cc/Fe3O4 structure at all concentrations had less hemolysis percentage than the pc/Fe3O4 structure. The chitosan-coated Fe3O4 nanoparticle showed the highest biocompatibility.


MNPs Superparamagnetic nanoparticles Cytotoxicity Polymers 



  1. 1.
    H. Nosrati, M. Salehiabar, S. Davaran, A. Ramazani, H.K. Manjili, H. Danafar, Res. Chem. Intermed. 43(12), 7423 (2017)CrossRefGoogle Scholar
  2. 2.
    R. Nisticò, Res. Chem. Intermed. 43(12), 6911 (2017)CrossRefGoogle Scholar
  3. 3.
    C. Bárcena, A.K. Sra, J. Gao, in Applications of Magnetic Nanoparticles in Biomedicine. Nanoscale Magnetic Materials and Applications (Springer, Boston, MA, 2009), pp. 591–626Google Scholar
  4. 4.
    K.S. Kim, KONA Powder Particle J. 33, 33 (2016)CrossRefGoogle Scholar
  5. 5.
    H. Zeng, J. Li, J.P. Liu, Z.L. Wang, S. Sun, Nature 420(6914), 395 (2002)CrossRefGoogle Scholar
  6. 6.
    A. Hu, G.T. Yee, W. Lin, J. Am. Chem. Soc. 127(36), 12486 (2005)CrossRefGoogle Scholar
  7. 7.
    H. Firouzabadi, N. Iranpoor, M. Gholinejad, J. Hoseini, Adv. Synth. Catal. 353(1), 125 (2011)CrossRefGoogle Scholar
  8. 8.
    F.Q. Hu, L. Wei, Z. Zhou, Y.L. Ran, Z. Li, M.Y. Gao, Adv. Mater. 18(19), 2553 (2006)CrossRefGoogle Scholar
  9. 9.
    J.H. Lee, Y.W. Jun, S.I. Yeon, J.S. Shin, J. Cheon, Angew. Chem. Int. Ed. 45(48), 8160 (2006)CrossRefGoogle Scholar
  10. 10.
    N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J.S. Guthi, J. Gao, Nano Lett. 6(11), 2427 (2006)CrossRefGoogle Scholar
  11. 11.
    S. Lotfi, S. Bahari, A. Bahari, M. Roudbari, J. Supercond. Novel Magn. 31(1), 2187–2193 (2017)Google Scholar
  12. 12.
    P. Soares, I. Ferreira, R. Igreja, C. Novo, J. Borges, Recent Patents Anti Cancer Drug Discov. 7(1), 64 (2012)CrossRefGoogle Scholar
  13. 13.
    Z. Nemati, R. Das, J. Alonso, E. Clements, M.H. Phan, H. Srikanth, J. Electron. Mater. 46(6), 3764 (2017)CrossRefGoogle Scholar
  14. 14.
    Y. Oh, N. Lee, H.W. Kang, J. Oh, Nanotechnology 27(11), 115101 (2016)CrossRefGoogle Scholar
  15. 15.
    F. Cellai, A. Munnia, J. Viti, S. Doumett, C. Ravagli, E. Ceni, A. Galli, Int. J. Mol. Sci. 18(5), 939 (2017)CrossRefGoogle Scholar
  16. 16.
    L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Chem. Rev. 112(11), 5818 (2012)CrossRefGoogle Scholar
  17. 17.
    F.Y. Cheng, C.H. Su, Y.S. Yang, C.S. Yeh, C.Y. Tsai, C.L. Wu, D.B. Shieh, Biomaterials 26(7), 729 (2005)CrossRefGoogle Scholar
  18. 18.
    R. Qiao, C. Yang, M. Gao, J. Mater. Chem. 19(35), 6274 (2009)CrossRefGoogle Scholar
  19. 19.
    S.M. Hussain, K.L. Hess, J.M. Gearhart, K.T. Geiss, J.J. Schlager, Toxicol. In Vitro 19(7), 975 (2005)CrossRefGoogle Scholar
  20. 20.
    J.R. McCarthy, R. Weissleder, Adv. Drug Deliv. Rev. 60(11), 1241 (2008)CrossRefGoogle Scholar
  21. 21.
    M.M. Yallapu, N. Chauhan, S.F. Othman, V. Khalilzad-Sharghi, M.C. Ebeling, S. Khan, S.C. Chauhan, Biomaterials 46, 1 (2015)CrossRefGoogle Scholar
  22. 22.
    Q.A. Pankhurst, J. Connolly, S.K. Jones, J.J. Dobson, J. Phys. D Appl. Phys. 36(13), R167 (2003)CrossRefGoogle Scholar
  23. 23.
    S. Gyergyek, D. Makovec, M. Jagodič, M. Drofenik, K. Schenk, O. Jordan, H. Hofmann, J. Alloys Compd. 694, 261 (2017)CrossRefGoogle Scholar
  24. 24.
    N. Mahmed, O. Heczko, A. Lancok, S.P. Hannula, J. Magn. Magn. Mater. 353, 15 (2014)CrossRefGoogle Scholar
  25. 25.
    L. Pislaru-Danescu, A. Morega, G. Telipan, V. Stoica, Optoelectron. Adv. Mater. 4(8), 1182 (2010)Google Scholar
  26. 26.
    K. Do Kim, S.S. Kim, Y.H. Choa, H.T. Kim, J. Ind. Eng. Chem. 13(7), 1137 (2007)Google Scholar
  27. 27.
    E. Alzahrani, A. Sharfalddin, M. Alamodi, Adv. Nanopart. 4(02), 53 (2015)CrossRefGoogle Scholar
  28. 28.
    D. Maity, S.G. Choo, J. Yi, J. Ding, J.M. Xue, J. Magn. Magn. Mater. 321(9), 1256 (2009)CrossRefGoogle Scholar
  29. 29.
    G. Thomas, F. Demoisson, R. Chassagnon, E. Popova, N. Millot, Nanotechnology 27(13), 135604 (2016)CrossRefGoogle Scholar
  30. 30.
    F.M. Kievit, M. Zhang, Acc. Chem. Res. 44(10), 853 (2011)CrossRefGoogle Scholar
  31. 31.
    D. Yang, X. Pang, Y. He, Y. Wang, G. Chen, W. Wang, Z. Lin, Angew. Chem. Int. Ed. 54(41), 12091 (2015)CrossRefGoogle Scholar
  32. 32.
    X. Pang, Y. He, J. Jung, Z. Lin, Science 353(6305), 1268 (2016)CrossRefGoogle Scholar
  33. 33.
    X. Pang, L. Zhao, W. Han, X. Xin, Z. Lin, Nat. Nanotechnol. 8(6), 426 (2013)CrossRefGoogle Scholar
  34. 34.
    C. Pilapong, Y. Keereeta, S. Munkhetkorn, S. Thongtem, T. Thongtem, Colloids Surf. B 113, 249 (2014)CrossRefGoogle Scholar
  35. 35.
    P.E. Feuser, L. dos Santos Bubniak, M.C. dos Santos Silva, A. da Cas Viegas, A.C. Fernandes, E. Ricci-Junior, P.H.H. de Araújo, Eur. Polym. J. 68, 355 (2015)CrossRefGoogle Scholar
  36. 36.
    M.E.F. Brollo, J.M. Orozco-Henao, R. López-Ruiz, D. Muraca, C.S.B. Dias, K.R. Pirota, M. Knobel, J. Magn. Magn. Mater. 397, 20 (2016)CrossRefGoogle Scholar
  37. 37.
    I. Khmara, O. Strbak, V. Zavisova, M. Koneracka, M. Kubovcikova, I. Antal, V. Kavecnsky, D. Lucanska, D. Dobrota, P. Kopcansky, J. Magn. Magn. Mater. 474, 319–325 (2019)CrossRefGoogle Scholar
  38. 38.
    H. Xu, Y. Xu, X. Pang, Y. He, J. Jung, H. Xia, Z. Lin, Sci. Adv. 1(2), e1500025 (2015)CrossRefGoogle Scholar
  39. 39.
    H. El Ghandoor, H.M. Zidan, M.M. Khalil, M.I.M. Ismail, Int. J. Electrochem. Sci. 7(6), 5734 (2012)Google Scholar
  40. 40.
    M. Mahmoudi, A. Simchi, M. Imani, A.S. Milani, P. Stroeve, J. Phys. Chem. B 112(46), 14470 (2008)CrossRefGoogle Scholar
  41. 41.
    P.B. Shete, R.M. Patil, N.D. Thorat, A. Prasad, R.S. Ningthoujam, S.J. Ghosh, S.H. Pawar, Appl. Surf. Sci. 288, 149 (2014)CrossRefGoogle Scholar
  42. 42.
    F. Gao, Y. Cai, J. Zhou, X. Xie, W. Ouyang, Y. Zhang, J. Tang, Nano Res. 3(1), 23 (2010)CrossRefGoogle Scholar
  43. 43.
    S.P. Gubin, Magnetic Nanoparticles. (WILEY-VCH Verlag GmbH & Co, 2009)Google Scholar
  44. 44.
    S.A. Jadhav, S.V. Patil, Front. Mater. Sci. 8(2), 193 (2014)CrossRefGoogle Scholar
  45. 45.
    J. Yang, L. Fan, Y. Xu, J. Xia, J. Nanopart. Res. 19(10), 333 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Solid State PhysicsUniversity of MazandaranBabolsarIran
  2. 2.Cellular and Molecular Biology Research Center, Health Research Institute, Faculty of MedicineBabol University of Medical SciencesBabolIran
  3. 3.Department of Clinical Biochemistry, School of MedicineBabol University of Medical SciencesBabolIran

Personalised recommendations