Research on Chemical Intermediates

, Volume 45, Issue 5, pp 3291–3300 | Cite as

An alternative, practical, and ecological protocol for synthesis of arylidene analogues of Meldrum’s acid as useful intermediates

  • Nader Ghaffari KhalighEmail author
  • Taraneh Mihankhah
  • Mohd Rafie Johan


This paper presents an ecological protocol for Knoevenagel condensation using a catalytic amount of 4,4′-trimethylenedipiperidine as a versatile, efficient, safe, commercially available, inexpensive, and recyclable organocatalyst by a ball-milling process at room temperature. The scope of the present protocol was explored and demonstrated for Knoevenagel condensation of the active methylene, such as Meldrum’s acid with various aryl and heteroaryl aldehydes. The developed protocol provides a good to excellent conversion of various aldehydes to respective Knoevenagel products in an environmentally friendly process. Furthermore, this efficient process displays a combination of the synthetic virtues of conventional Knoevenagel condensation with ecological benefits and the convenience of a facile mechanochemistry procedure.


Versatile intermediate C–C coupling Heterogeneous catalysis Solid-state reactions Waste prevention 



The authors are grateful to staff members at the Analytical and Testing Center of Research House of Professor Reza, and express thanks to the University of Malaya for partial support of this work.

Compliance with ethical standards

Conflicts of interest

There are no conflicts of interest to declare.


  1. 1.
    J.L. Do, T. Frisčič, ACS Cent. Sci. 3, 13 (2017)CrossRefGoogle Scholar
  2. 2.
    M.A.P. Martins, C.P. Frizzo, D.N. Moreira, L. Buriol, P. Machado, Chem. Rev. 109, 4140 (2009)CrossRefGoogle Scholar
  3. 3.
    L.R. Madivada, R.R. Anumala, G. Gilla, S. Alla, K. Charagondla, M. Kagga, A. Bhattacharya, R. Bandichhor, Org. Process Res. Dev. 13, 1190 (2009)CrossRefGoogle Scholar
  4. 4.
    M.S. Hoekstra, D.M. Sobieray, M.A. Schwindt, T.A. Mulhern, T.M. Grote, B.K. Huckabee, V.S. Hendrickson, L.C. Franklin, E.J. Granger, G.L. Karrick, Org. Process Res. Dev. 1, 26 (1997)CrossRefGoogle Scholar
  5. 5.
    D.B. Ramachary, C. Venkaiah, Y.V. Reddy, M. Kishor, Org. Biomol. Chem. 7, 2053 (2009)CrossRefGoogle Scholar
  6. 6.
    L.G. Voskressensky, A.A. Festa, A.V. Varlamov, Tetrahedron 70, 551 (2014)CrossRefGoogle Scholar
  7. 7.
    L.F. Tietze, U. Beifuss, in Comprehensive Organic Synthesis, vol. 2, ed. by B.M. Trost, I. Flemming, C.H. Heatcock (Pergamon Press, Oxford, 1991), p. 341CrossRefGoogle Scholar
  8. 8.
    A.A. Zemtsov, V.V. Levin, A.D. Dilman, M.I. Struchkova, P.A. Belyakov, V.A. Tartakovsky, Tetrahedron Lett. 50, 2998 (2009)CrossRefGoogle Scholar
  9. 9.
    B. Pia, E. Sotelo, M. Suarez, E. Ravina, E. Ochoa, Y. Verdecia, H. Novoa, N. Blaton, C. de Ranter, O.M. PeeterS, Tetrahedron 56, 2473 (2000)CrossRefGoogle Scholar
  10. 10.
    K. Liu, W. Rao, H. Parikh, Q. Li, T.L. Guo, S. Grant, G.E. Kellogg, S. Zhang, Eur. J. Med. Chem. 47, 125 (2012)CrossRefGoogle Scholar
  11. 11.
    E.E. Shults, E.A. Semenova, A.A. Johnson, S.P. Bondarenko, I.Y. Bagryanskaya, Y.V. Gatilov, G.A. Tolstikov, Y. Pommier, Bioorg. Med. Chem. Lett. 17, 1362 (2007)CrossRefGoogle Scholar
  12. 12.
    H.S. Sandhu, S. Sapra, M. Gupta, K. Nepali, R. Gautam, S. Yadav, R. Kumar, S.M. Jachak, M. Chugh, M.K. Gupta, O.P. Suri, K.L. Dhar, Bioorg. Med. Chem. 18, 5626 (2010)CrossRefGoogle Scholar
  13. 13.
    H. Mudhar, A. Witty, Tetrahedron Lett. 51, 4972 (2010)CrossRefGoogle Scholar
  14. 14.
    R.C. Larock, Comprehensive organic transformations, 2nd edn. (Wiley, Toronto, 1999)Google Scholar
  15. 15.
    F. Santamarta, P. Verdìa, E. Tojo, Catal. Commun. 9, 1779 (2008)Google Scholar
  16. 16.
    Z. Du, T. Kawatani, K. Kataoka, R. Omatsu, J. Nokami, Tetrahedron 68, 2471 (2012)CrossRefGoogle Scholar
  17. 17.
    N.G. Khaligh, S.B.A. Hamid, S.J.J. Titinchi, Polycycl Aromat Compd 37, 31 (2017)CrossRefGoogle Scholar
  18. 18.
    N.G. Khaligh, S.J.J. Titinchi, S.B.A. Hamid, H.S. Abbo, Polycycl Aromat Compd 36, 716 (2016)CrossRefGoogle Scholar
  19. 19.
    N.G. Khaligh, S.B.A. Hamid, S.J.J. Titinchi, Chin. Chem. Lett. 27, 104 (2016)CrossRefGoogle Scholar
  20. 20.
    N.G. Khaligh, H.S. Abbo, S.J.J. Titinchi, Res. Chem. Intermed. 43, 901 (2017)CrossRefGoogle Scholar
  21. 21.
    N.G. Khaligh, O.C. Ling, T. Mihankhah, M.R. Johan, J.J. Ching, Aust. J. Chem. (2018)Google Scholar
  22. 22.
    J.M. Khurana, K. Vij, Tetrahedron Lett. 52, 3666 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Ghosh, J. Das, S. Chattopadhyay, Tetrahedron Lett. 52, 2869 (2011)CrossRefGoogle Scholar
  24. 24.
    A.R. Mohite, R.G. Bhat, Org. Lett. 15, 4564 (2013)CrossRefGoogle Scholar
  25. 25.
    T.S. Jin, R.Q. Zhao, M. Li, Y. Zhao, T.S. Li, Arkivok 14, 53 (2006)Google Scholar
  26. 26.
    E.V. Dalessandro, H.P. Collin, L.G.L. Guimaraes, M.S. Valle, J.R. Pliego Jr., J. Phys. Chem. B 121, 5300 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Nanotechnology and Catalysis Research Center, Institute of Postgraduate StudiesUniversity of MalayaKuala LumpurMalaysia
  2. 2.Environmental Research Laboratory, Department of Water and Environmental Engineering, School of Civil EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations