Advertisement

Determining the feasibility of H2O2 production at a graphite cathode using bond dissociation energy: comparing simple and nitrogen doped cathodes

  • Anam Asghar
  • Abdul Aziz Abdul RamanEmail author
  • Wan Mohd Ashri Wan Daud
  • Anantharaj Ramalingam
  • Sharifuddin Bin Md Zain
Article
  • 32 Downloads

Abstract

Hydrogen peroxide (H2O2) is commercially produced by catalytic oxidation of anthrahydroquinone, which is energy-intensive. Electrochemical production of hydrogen peroxide production through oxygen reduction reaction (ORR) is a sustainable approach, primarily due to its significance in energy conversion systems such as fuel cells. Low temperature fuel cells use graphite as a cathode for H2O2 synthesis. However, the catalytic activity of a graphite cathode for a two-electron oxygen reduction reaction must be improved. Nitrogen doping is an efficient approach to modify the electrochemically active surface of the graphite cathode. Therefore, quantum chemical approaches are essential to comprehend the molecular nature of the processes at the cathode. DFT/B3LYP/6-31G* method was employed and bond dissociation energy (BDE) analysis was performed to determine the feasibility of H2O2 production at graphite and nitrogen-doped graphite (Graphite-N) cathodes. According to the suggested mechanism, oxygen adsorption is the first step of the ORR. Calculated values showed that with energy value of 23.50 kcal/mol oxygen adsorption at the Graphite-N cathode is energetically more favorable than the graphite cathode (Ead = 65.08 kcal/mol). Considering the ORR mechanism, a second-electron oxygen reduction is identified as a key step for both H2O and H2O2 production. Therefore, BDEs were compared at the second-electron oxygen reduction step. On average, − 320.92 and − 286.04 kcal/mol of BDEs for graphite and Graphite-N cathodes showed the feasibility of H2O2 production at the Graphite-N cathode. The results are in agreement with the literature. Thus, it is concluded that nitrogen doping of the graphite cathode increases the feasibility of H2O2 production.

Graphical abstract

Keywords

Bond dissociation energy Hydrogen peroxide Quantum chemical calculations DFT theory 

Abbreviations

B3LYP

Beck’s 3-parameter Lee–Yang–Parr

DFT

Density functional theory

EBDE

Bond dissociation energy

Graphene–N

Nitrogen dopped graphene

HF

Hartree–Fock

HOO*

Graphene–OOH complex

HO*

Graphene–OH complex

HOO*(N)

Graphene–N–OOH

HO*(N)

Graphene–N–OH

H2O2

Hydrogen peroxide

MFC

Microbial fuel cell

O*

Graphene–O complex

O2*

Graphene–O2 complex

O*(N)

Graphene–N–O

O2*(N)

Graphene–N–O2

ORR

Oxygen reduction reaction

Notes

Acknowledgements

The authors are grateful to the University of Malaya Postgraduate Research Grant (PPP PV139 2012A) which financially supported this work.

References

  1. 1.
    E. Neyens, J. Baeyens, J. Hazard. Mater. 98, 33 (2003)CrossRefGoogle Scholar
  2. 2.
    J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Angew. Chem. Int. Ed. 45, 6962 (2006)CrossRefGoogle Scholar
  3. 3.
    X. Zhu, B.E. Logan, J. Hazard. Mater. 252–253, 198 (2013)CrossRefGoogle Scholar
  4. 4.
    C. Song, J. Zhang, Electrocatalytic oxygen reduction reaction, in PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications (Springer London, London, 2008), pp. 89–134Google Scholar
  5. 5.
    B.E. Logan, C. Murano, K. Scott, N.D. Gray, I.M. Head, Water Res. 39, 942 (2005)CrossRefGoogle Scholar
  6. 6.
    A. Asghar, A.A.A. Raman, W.M.A.W. Daud, J. Chem. Technol. Biotechnol. 92, 1825 (2017)CrossRefGoogle Scholar
  7. 7.
    L. Fu, S.-J. You, F.-L. Yang, M.-M. Gao, X.-H. Fang, G.-Q. Zhang, J. Chem. Technol. Biotechnol. 85, 715 (2010)CrossRefGoogle Scholar
  8. 8.
    M.Á. Fernández de Dios, A.G. del Campo, F.J. Fernández, M. Rodrigo, M. Pazos, M.Á. Sanromán, Bioresour. Technol. 148, 39 (2013)CrossRefGoogle Scholar
  9. 9.
    V. Perazzolo, C. Durante, R. Pilot, A. Paduano, J. Zheng, G.A. Rizzi, A. Martucci, G. Granozzi, A. Gennaro, Carbon 95, 949 (2015)CrossRefGoogle Scholar
  10. 10.
    D. Xiong, X. Li, Z. Bai, H. Shan, L. Fan, C. Wu, D. Li, S. Lu, A.C.S. Appl, Mater. Interfaces 9, 10643 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Asghar, A.A.A. Raman, W.M.A.W. Daud, M. Ahmad, S.U.B.M. Zain, J. Taiwan Inst. Chem. Eng. 76, 89 (2017)CrossRefGoogle Scholar
  12. 12.
    A. Asghar, A. Salihoudin, A. Aziz Abdul Raman, W. Mohd Ashri Wan Daud, Environ. Prog. Sustain. Energy 36, 382 (2017)Google Scholar
  13. 13.
    Y. Sun, I. Sinev, W. Ju, A. Bergmann, S. Dresp, S. Kühl, C. Spöri, H. Schmies, H. Wang, D. Bernsmeier, B. Paul, R. Schmack, R. Kraehnert, B. Roldan Cuenya, P. Strasser, ACS Catal. 8, 2844 (2018)CrossRefGoogle Scholar
  14. 14.
    R.A. Sidik, A.B. Anderson, N.P. Subramanian, S.P. Kumaraguru, B.N. Popov, J. Phys. Chem. B 110, 1787 (2006)CrossRefGoogle Scholar
  15. 15.
    S. Walch, A. Dhanda, M. Aryanpour, H. Pitsch, J. Phys. Chem. C 112, 8464 (2008)CrossRefGoogle Scholar
  16. 16.
    L. Zhang, J. Niu, L. Dai, Z. Xia, Langmuir 28, 7542 (2012)CrossRefGoogle Scholar
  17. 17.
    T. Ikeda, Z. Hou, G.-L. Chai, K. Terakura, J. Phys. Chem. C 118, 17616 (2014)CrossRefGoogle Scholar
  18. 18.
    A. Asghar, A.A. Abdul Raman, W.M.A. Wan Daud, A. Ramalingam, Environ. Prog Sustain. Energy 37, 1291 (2018)CrossRefGoogle Scholar
  19. 19.
    J. Zhao, H. Zeng, X. Cheng, Int. J. Quantum Chem. 112, 665 (2012)CrossRefGoogle Scholar
  20. 20.
    K. Ben Liew, W.R.W. Daud, M. Ghasemi, J.X. Leong, S. Su Lim, M. Ismail, Int. J. Hydrogen Energy 39, 4870 (2014)CrossRefGoogle Scholar
  21. 21.
    C.H. Choi, H.-K. Lim, M.W. Chung, J.C. Park, H. Shin, H. Kim, S.I. Woo, J. Am. Chem. Soc. 136(25), 9070 (2014)CrossRefGoogle Scholar
  22. 22.
    L. Yu, X. Pan, X. Cao, P. Hu, X. Bao, J. Catal. 282, 183 (2011)CrossRefGoogle Scholar
  23. 23.
    M.J.T. Frisch, G.W. Schlegel, H.B. Scuseria, G.E. Robb, M.A. Cheeseman, J.R. Scalmani, G. Barone, V. Mennucci, B. Petersson, G.A. Nakatsuji, H. Caricato, M. Li, X. Hratchian, H.P. Izmaylov, A.F. Bloino, J. Zheng, G. Sonnenberg, J.L. Hada, M. Ehara, M. Toyota, K. Fukuda, R. Hasegawa, J. Ishida, M. Nakajima, T. Honda, Y. Kitao, O. Nakai, H. Vreven, T. Montgomery, J.A., Jr. Peralta, J.E. Ogliaro, F. Bearpark, M. Heyd, J.J. Brothers, E. Kudin, K.N. Staroverov, V.N. Kobayashi, R. Normand, J. Raghavachari, K. Rendell, A. Burant, J.C. Iyengar, S.S. Tomasi, J. Cossi, M. Rega, N. Millam, J. M. Klene, M. Knox, J.E. Cross, J.B. Bakken, V. Adamo, C. Jaramillo, J. Gomperts, R. Stratmann, R.E. Yazyev, O. Austin, A.J. Cammi, R. Pomelli, C. Ochterski, J.W. Martin, R.L. Morokuma, K. Zakrzewski, V.G. Voth, G.A. Salvador, P. Dannenberg, J.J. Dapprich, S. Daniels, A.D. Farkas, Ö. Foresman, J.B. Ortiz, J.V. Cioslowski, J. Fox, D. J. Gaussian, Inc., Wallingford CT (2009)Google Scholar
  24. 24.
    R. Dennington, T. Keith, J. Millan, GaussView 05 (2009)Google Scholar
  25. 25.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)CrossRefGoogle Scholar
  26. 26.
    R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)CrossRefGoogle Scholar
  27. 27.
    H. Shokry, J. Mol. Struct. 80, 1060 (2014)Google Scholar
  28. 28.
    M.J. Frisch, J.A. Pople, J.S. Binkley, J. Chem. Phys. 80, 3265 (1984)CrossRefGoogle Scholar
  29. 29.
    X.-H. Li, R.-Z. Zhang, X.-Z. Zhang, J. Mol. Graph. Model. 43, 66 (2013)CrossRefGoogle Scholar
  30. 30.
    J.B.A. Davis, F. Baletto, R.L. Johnston, J. Phys. Chem. A 119, 9703 (2015)CrossRefGoogle Scholar
  31. 31.
    Y. Joo, M. Kim, C. Kanimozhi, P. Huang, B.M. Wong, S. Singha, J. Phys. Chem. C 120, 13815 (2016)CrossRefGoogle Scholar
  32. 32.
    C. Huang, M. Kim, B.M. Wong, N.S. Safron, M.S. Arnold, P. Gopalan, J. Phys. Chem. C 118, 2077 (2014)CrossRefGoogle Scholar
  33. 33.
    J. Klimeš, A. Michaelides, J. Chem. Phys. 137, 120901 (2012)CrossRefGoogle Scholar
  34. 34.
    D. Cortés Arriagada, L. Sanhueza, K. Wrighton, Int. J. Quantum. Chem. 113, 1931 (2013)CrossRefGoogle Scholar
  35. 35.
    H.J. Yan, B. Xu, S.Q. Shi, C.Y. Ouyang, J. Appl. Phys. 112, 104316 (2012)CrossRefGoogle Scholar
  36. 36.
    K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 323, 760 (2009)CrossRefGoogle Scholar
  37. 37.
    D.W. Boukhvalov, Y.-W. Son, Nanoscale 4, 417 (2012)CrossRefGoogle Scholar
  38. 38.
    H. Zeng, J. Zhao, X. Xiao, Chin. Phys. B 22, 023301 (2013)CrossRefGoogle Scholar
  39. 39.
    B.S. Jursic, R.M. Martin, Int. J. Quant. Chem. 59, 495 (1996)CrossRefGoogle Scholar
  40. 40.
    S.J. Blanksby, G.B. Ellison, Acc. Chem. Res. 36, 255 (2003)CrossRefGoogle Scholar
  41. 41.
    L. Zhang, Z. Xia, J. Phys. Chem. C 115, 11170 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, School of EngineeringUniversity of MississippiOxfordUSA
  2. 2.Department of Chemical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Chemical EngineeringSSN College of EngineeringChennaiIndia
  4. 4.Department of Chemistry, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations