Research on Chemical Intermediates

, Volume 45, Issue 5, pp 3237–3250 | Cite as

A high performance solid-state asymmetric supercapacitor based on Anderson-type polyoxometalate-doped graphene aerogel

  • Deli Lu
  • Xiaojie Zhang
  • Haotian Chen
  • Jingjing Lin
  • Yueran Liu
  • Bin Chang
  • Feng QiuEmail author
  • Sheng HanEmail author
  • Fan Zhang


The manufacture of single-atom transition metal-doping carbon nanocomposites as electrode materials is crucial for electrochemical energy storage with high energy and power density. However, the simple strategy for preparation of such active materials with controlled structure remains a great challenge. Here, cobalt-doped carbon nanocomposites (Co-POM/rGO) were synthesized successfully by deposition of Anderson-type polyoxometalate (POM) on the surface of reduced graphene oxide (rGO) aerogel via one-pot hydrothermal treatment. The resulting Co-POM/rGO possesses three-dimensional graphene-based frameworks with hierarchical porous structure, high surface area and uniform single-atom metal doping. These intriguing features render Co-POM/rGO to be a promising electrode for applications in electrochemical energy storage. As an electrode material of a supercapacitor, Co-POM/rGO shows high-performance electrochemical energy storage (211.3 F g−1 at 0.5 A g−1). Furthermore, the solid-state asymmetric supercapacitor (ASC) device, using Co-POM/rGO as a positive electrode, exhibits the outstanding energy density of 37.6 Wh kg−1 at a power density of 500 W kg−1, and high capacitance retention of 95.2% after 5000 charge–discharge cycles. These results indicate that the proposed strategy for rational design of single-atom-metal doped carbon nanocomposites for flexible ASC devices with excellent capacitive properties.


Solid-state asymmetric supercapacitor Polyoxometalate Graphene aerogel Single-atom metal doping Carbon nanocomposite 



This work was supported by the National Natural Science Foundation of China (21606151, 21504057, and 21707092), Natural Science Foundation of Shanghai (17ZR1441700 and 14ZR1440500), China Postdoctoral Science Foundation (2017M6104260), Shanghai Excellent Technology Leaders Program (17XD1424900), Shanghai Leading Talent Program (017), Collaborative Innovation Fund of SIT (XTCX2015-9), and the Shanghai Association for Science and Technology Achievements Transformation Alliance Program (LM201680 and LM201833).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11164_2019_3789_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1: TGA curves, SEM images, EDX results, BET results, electrochemical results and comparison of supercapacitor. (DOCX 1586 kb)


  1. 1.
    H. Chen, Y. Ai, F. Liu, X. Chang, Y. Xue, Q. Huang, C. Wang, H. Lin, S. Han, Electrochim. Acta 213, 55 (2016)CrossRefGoogle Scholar
  2. 2.
    K.S. Kumar, N. Choudhary, Y. Jung, J. Thomas, ACS Energy Lett. 3, 482 (2018)CrossRefGoogle Scholar
  3. 3.
    K. Ghosh, C.Y. Yue, M.M. Sk, R.K. Jena, ACS Appl. Mater. Interfaces 9, 15350 (2017)CrossRefGoogle Scholar
  4. 4.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)CrossRefGoogle Scholar
  5. 5.
    Y. Li, H. Liu, J. Xu, Y. Liu, M. Wang, J. Li, H. Cui, J. Mater. Chem. A 6, 19788 (2018)CrossRefGoogle Scholar
  6. 6.
    H. Lin, Q. Huang, J. Wang, J. Jiang, F. Liu, Y. Chen, C. Wang, D. Lu, S. Han, Electrochim. Acta 191, 444 (2016)CrossRefGoogle Scholar
  7. 7.
    H. Chen, X. Chang, D. Chen, J. Liu, P. Liu, Y. Xue, H. Lin, S. Han, Electrochim. Acta 220, 36 (2016)CrossRefGoogle Scholar
  8. 8.
    J. Azadmanjiri, V.K. Srivastava, P. Kumar, J. Wang, A. Yu, J. Mater. Chem. A 6, 13509 (2018)CrossRefGoogle Scholar
  9. 9.
    J. Duay, E. Gillette, R. Liu, S.B. Lee, Phys. Chem. Chem. Phys. 14, 3329 (2012)CrossRefGoogle Scholar
  10. 10.
    Z. Zhang, F. Xiao, S. Wang, J. Mater. Chem. A 3, 11215 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, Science 332, 1537 (2011)CrossRefGoogle Scholar
  12. 12.
    I. Dumitrescu, P.R. Unwin, J.V. Macpherson, Chem. Commun. 41, 6886 (2009)CrossRefGoogle Scholar
  13. 13.
    T. Lin, I.W. Chen, F. Liu, C. Yang, H. Bi, F. Xu, F. Huang, Science 350, 1508 (2015)CrossRefGoogle Scholar
  14. 14.
    S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano 4, 2822 (2010)CrossRefGoogle Scholar
  15. 15.
    Y. Cheng, S. Lu, H. Zhang, C.V. Varanasi, J. Liu, Nano Lett. 12, 4206 (2012)CrossRefGoogle Scholar
  16. 16.
    X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Nano Lett. 12, 1690 (2012)CrossRefGoogle Scholar
  17. 17.
    Z. Sun, F. Huang, Y. Sui, F. Wei, J. Qi, Q. Meng, H. Hu, Y. He, J. Mater. Sci. Mater. Electron. 28, 14019 (2017)CrossRefGoogle Scholar
  18. 18.
    X.Y. Feng, C. Shen, Y. Yu, S.Q. Wei, C.H. Chen, J. Power Sources 230, 59 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Acerce, D. Voiry, M. Chhowalla, Nat. Nanotechnol. 10, 313 (2015)CrossRefGoogle Scholar
  20. 20.
    X. Cao, J. He, H. Li, L. Kang, X. He, J. Sun, R. Jiang, H. Xu, Z. Lei, Z.H. Liu, Small 14, e1800998 (2018)CrossRefGoogle Scholar
  21. 21.
    P. Liu, H. Chen, X. Chang, Y. Xue, J. Zhou, Z. Zhao, H. Lin, S. Han, Electrochim. Acta 231, 565 (2017)CrossRefGoogle Scholar
  22. 22.
    B. Gao, X. Li, K. Ding, C. Huang, Q. Li, P.K. Chu, K. Huo, J. Mater. Chem. A 7, 14 (2018)CrossRefGoogle Scholar
  23. 23.
    H. Yao, F. Zhang, G. Zhang, H. Luo, L. Liu, M. Shen, Y. Yang, Chem. Eng. J. 334, 2547 (2018)CrossRefGoogle Scholar
  24. 24.
    Z.S. Wu, L. Chen, J. Liu, K. Parvez, H. Liang, J. Shu, H. Sachdev, R. Graf, X. Feng, K. Mullen, Adv. Mater. 26, 1450 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Genovese, K. Lian, ACS Appl. Mater. Interfaces 8, 19100 (2016)CrossRefGoogle Scholar
  26. 26.
    A. Mu, J. Li, W. Chen, X. Sang, Z. Su, E. Wang, Inorg. Chem. Commun. 55, 149 (2015)CrossRefGoogle Scholar
  27. 27.
    R. Li, C. He, L. Cheng, G. Lin, G. Wang, D. Shi, R.K.-Y. Li, Y. Yang, Compos. B Eng. 121, 75 (2017)CrossRefGoogle Scholar
  28. 28.
    J. Wang, X. Wang, D. Gu, C. Liu, L. Shen, Ceram. Int. 44, 17492 (2018)CrossRefGoogle Scholar
  29. 29.
    D.P. Dubal, J. Suarez-Guevara, D. Tonti, E. Enciso, P. Gomez-Romero, J. Mater. Chem. A 3, 23483 (2015)CrossRefGoogle Scholar
  30. 30.
    J. Suarez-Guevara, V. Ruiz, P. Gomez-Romero, Phys. Chem. Chem. Phys. 16, 20411 (2014)CrossRefGoogle Scholar
  31. 31.
    H. Yu, Y. Zhai, G. Dai, S. Ru, S. Han, Y. Wei, Chem. Eur. J. 23, 13883 (2017)CrossRefGoogle Scholar
  32. 32.
    J. Cheng, S. Chen, D. Chen, L. Dong, J. Wang, T. Zhang, T. Jiao, B. Liu, H. Wang, J.-J. Kai, D. Zhang, G. Zheng, L. Zhi, F. Kang, W. Zhang, J. Mater. Chem. A 6, 20254 (2018)CrossRefGoogle Scholar
  33. 33.
    J. Wang, Z. Shi, J. Fan, Y. Ge, J. Yin, G. Hu, J. Mater. Chem. A 22, 22459 (2012)CrossRefGoogle Scholar
  34. 34.
    Z.-J. Fan, W. Kai, J. Yan, T. Wei, L.-J. Zhi, J. Feng, Y.-M. Ren, L.-P. Song, F. Wei, ACS Nano 5, 191 (2011)CrossRefGoogle Scholar
  35. 35.
    Y. Tang, F. Jing, Z. Xu, F. Zhang, Y. Mai, D. Wu, ACS Appl. Mater. Interfaces 9, 12340 (2017)CrossRefGoogle Scholar
  36. 36.
    T.E. Rufford, D. Hulicova-Jurcakova, Z. Zhu, G.Q. Lu, J. Phys. Chem. C 113, 19335 (2009)CrossRefGoogle Scholar
  37. 37.
    Z. Lin, Y. Liu, Y. Yao, O.J. Hildreth, Z. Li, K. Moon, C.-P. Wong, J. Phys. Chem. C 115, 7120 (2011)CrossRefGoogle Scholar
  38. 38.
    L. Lu, Y. Xie, New J. Chem. 41, 335 (2017)CrossRefGoogle Scholar
  39. 39.
    G. Wang, J. Huang, S. Chen, Y. Gao, D. Cao, J. Power Sources 196, 5756 (2012)CrossRefGoogle Scholar
  40. 40.
    L. Zang, Q. Liu, J. Qiu, C. Yang, C. Wei, C. Liu, L. Lao, ACS Appl. Mater. Interfaces 9, 33941 (2017)CrossRefGoogle Scholar
  41. 41.
    C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Nano Lett. 10, 4025 (2010)CrossRefGoogle Scholar
  42. 42.
    A. Sumboja, J. Liu, W.G. Zheng, Y. Zong, H. Zhang, Z. Liu, Chem. Soc. Rev. 47, 5919 (2018)CrossRefGoogle Scholar
  43. 43.
    Y. Jin, H. Chen, M. Chen, N. Liu, Q. Li, ACS Appl. Mater. Interfaces 5, 3408 (2013)CrossRefGoogle Scholar
  44. 44.
    C. Wang, Y. Huang, H. Pan, J. Jiang, X. Yang, Z. Xu, H. Tian, S. Han, D. Wu, Electrochim. Acta 215, 100 (2016)CrossRefGoogle Scholar
  45. 45.
    X. Tang, Y.H. Lui, A.R. Merhi, B. Chen, S. Ding, B. Zhang, S. Hu, ACS Appl. Mater. Interfaces 9, 44429 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Deli Lu
    • 1
  • Xiaojie Zhang
    • 1
  • Haotian Chen
    • 1
  • Jingjing Lin
    • 1
  • Yueran Liu
    • 1
  • Bin Chang
    • 1
  • Feng Qiu
    • 1
    • 2
    Email author
  • Sheng Han
    • 1
    Email author
  • Fan Zhang
    • 3
  1. 1.School of Chemical and Environmental EngineeringShanghai Institute of TechnologyShanghaiPeople’s Republic of China
  2. 2.School of ChemistryUniversity of BristolBristolUK
  3. 3.School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations