Research on Chemical Intermediates

, Volume 45, Issue 5, pp 3183–3198 | Cite as

Enhancement of photodegradation efficiency, photoluminescence quantum yield, and magnetization in highly Yb3+-doped CdO nanoparticles synthesized via sol–gel method

  • Afrouz Khadivi Asenjun
  • Abdolali AlemiEmail author


Cd1−xYbxO (x = 0, 1, 5, 10, 15 mol%) nanoparticles (NPs) were successfully synthesized by pulverizing the product obtained from a sol–gel process. The crystalline structure of the synthesized samples was established by X-ray diffraction analysis. Scanning electron microscopy revealed that the prepared samples were nanoscale and the size of the NPs decreased with increasing dopant concentration. Elemental analysis of the products was carried out by energy-dispersive X-ray spectroscopy. Ultraviolet–visible (UV–Vis) and Fourier-transform infrared (FT-IR) spectroscopies were used to characterize the synthesized species. Increasing the Yb3+ ion level in the host matter resulted in decreased bandgap energy. Photoluminescence measurements confirmed the enhanced intensity of the characteristic emissions in the Yb3+-doped CdO NPs, indicating appropriate substitution of Cd2+ with Yb3+ ions. Magnetic measurements revealed that, with addition of Yb3+ ion, the magnetic behavior of the samples changed. Increasing the dopant ion concentration, thereby decreasing the size of the obtained NPs, changed their behavior from paramagnetic to superparamagnetic, with increased saturation magnetization (MS) for higher dopant level. Photocatalytic measurements under UV and natural sunlight irradiation revealed that the samples prepared with high dopant concentration (15 mol%) exhibited excellent photocatalytic activity under natural sunlight for decomposition of methylene blue dye.


Ytterbium Cadmium oxide Superparamagnetic Photocatalyst 



This study was funded by the University of Tabriz. The authors sincerely thank the authorities of the University of Tabriz, Iran for financing this project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    A. Dakhel, W. Alnaser, Bull. Mater. Sci. 39, 1843 (2016)CrossRefGoogle Scholar
  2. 2.
    F. Benko, F. Koffyberg, Solid State Commun. 57, 901 (1989)CrossRefGoogle Scholar
  3. 3.
    K.M. Yu, M.A. Mayer, D.T. Speaks, H. He, R. Zhao, L. Hsu, S.S. Mao, E.E. Haller, W. Walukiewicz, J. Appl. Phys. 111, 123505 (2012)CrossRefGoogle Scholar
  4. 4.
    A.A. Dakhel, J. Electron. Mater. 41, 2405 (2012)CrossRefGoogle Scholar
  5. 5.
    A.A. Dakhe, J. Mater. Sci.: Mater. Electron. 28, 4856 (2017)Google Scholar
  6. 6.
    K. Sankarasubramanian, P. Soundarrajan, T. Logu, K. Sethuraman, K. Ramamurthi, New J. Chem. 42, 1457 (2017)CrossRefGoogle Scholar
  7. 7.
    S.J. Helen, S. Devadason, M. Haris, T. Mahalingam, J. Electron. Mater. 47, 2439 (2018)CrossRefGoogle Scholar
  8. 8.
    T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, D. Golberg, Adv. Funct. Mater. 20, 4233 (2010)CrossRefGoogle Scholar
  9. 9.
    P.V. Korake, S.N. Achary, N.M. Gupta, Int. J. Hydrog. Energy 40, 8695 (2015)CrossRefGoogle Scholar
  10. 10.
    A.A. Dakhel, M. Bououdina, Appl. Phys. A 119, 1053 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Bououdina, A.A. Dakhel, J. Alloys Compd. 601, 162 (2014)CrossRefGoogle Scholar
  12. 12.
    C.P. Liu et al., Phys. Rev. Appl. 6, 64018 (2016)CrossRefGoogle Scholar
  13. 13.
    D.M. Carballeda-Galicia, R. Castanedo-Perez, O. Jimenez-Sandoval, S. Jimenez-Sandoval, G. Torres Delgado, C.I. Zuniga-Romero, Thin Solid Films 371, 105 (2000)CrossRefGoogle Scholar
  14. 14.
    B. Goswami, A. Choudhury, J. Exp. Nanosci. 10, 900 (2014)CrossRefGoogle Scholar
  15. 15.
    G.D. Zeng, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561 (2010)CrossRefGoogle Scholar
  16. 16.
    G. Boulon, J. Alloys Compd. 451, 1 (2008)CrossRefGoogle Scholar
  17. 17.
    Y.-J. Liang, F. Liu, Y.-F. Chen, X.-J. Wang, K.-N. Sun, Z. Pan, Sci. Appl. 5, e16124 (2016)Google Scholar
  18. 18.
    A.T. Ravichandran, A. Robert Xavier, K. Pushpanathan, B.M. Nagabhushana, Scr. Mater. 69, 533 (2013)CrossRefGoogle Scholar
  19. 19.
    K. Sankarasubramanian, P. Soundarrajan, T. Logu, S. Kiruthika, K. Sethuraman, R. RameshBabu, K. Ramamurthi, Mater. Sci. Semicond. Process. 26, 346 (2014)CrossRefGoogle Scholar
  20. 20.
    A.T. Ravichandran, A. Robert Xavier, K. Pushpanathan, B.M. Nagabhushana, R. Chandramohan, Mater. Sci. 27, 2693 (2015)Google Scholar
  21. 21.
    A. Alemi, S. Khademinia, S.W. Joo, M.D.H. Moradi, JNS 3, 1 (2013)CrossRefGoogle Scholar
  22. 22.
    A.A. Dakhel, Mater. Res. 16, 379 (2016)CrossRefGoogle Scholar
  23. 23.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Mater. Sci.: Mater. Electron. 28, 11420 (2017)Google Scholar
  24. 24.
    V.K. Gupta, A. Fakhri, S. Tahami, S. Agarwa, J. Colloid Interface Sci. 504, 164 (2017)CrossRefGoogle Scholar
  25. 25.
    C.V. Reddy, B. Babu, J. Shim, J. Phys. Chem. Solids 112, 20 (2018)CrossRefGoogle Scholar
  26. 26.
    D.J. Jeejamol, A. Moses Ezhil Raj, K. Jayakumari, C. Ravidhas, J. Mater. Sci.: Mater. Electron. 29, 97 (2018)Google Scholar
  27. 27.
    H. Gulce, V. Eskizeybek, B. Haspulat, F. Sarı, A. Gulce, A. Avcı, Ind. Eng. Chem. Res. 52, 10924 (2013)CrossRefGoogle Scholar
  28. 28.
    R. Saravanan, M. Mansoob Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, J. Colloid Interface Sci. 452, 126 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Arivarasan, S. Bharathi, S. Ezhilarasi et al., J. Inorg. Organomet. Polym. 29, 1443 (2019)Google Scholar
  30. 30.
    O.E. Raola, G.F. Strouse, Nano Lett. 2, 1443 (2002)CrossRefGoogle Scholar
  31. 31.
    I. Soumahoro, G. Schmerber, A. Douayar, S. Colis, M. Abd-Lefdil, N. Hassanain, A. Berrada, D. Muller, A. Slaoui, H. Rinnert, A. Dinia, J. Appl. Phys. 109, 33708 (2011)CrossRefGoogle Scholar
  32. 32.
    M. Balestrieri, G. Ferblantier, S. Colis, G. Schmerber, C. Ulhaq-Bouillet, D. Muller, A. Slaoui, A. Dinia, Sol. Energy Mater. Sol. Cells 117, 363 (2013)CrossRefGoogle Scholar
  33. 33.
    H. Yang, S. Nie, Mater. Chem. Phys. 114, 279 (2009)CrossRefGoogle Scholar
  34. 34.
    W.Z. Tawfik, M. Esmat, S.I. El-Dek, Appl. Nanosci. 7, 863 (2017)CrossRefGoogle Scholar
  35. 35.
    J.A. Wibowo, N.F. Djaja, R. Saleh, AMPC 3, 29137 (2013)CrossRefGoogle Scholar
  36. 36.
    T. Thangeeswari, M. Priya, J. Velmurugan, N. Padmanathan, Bull. Mater. Sci. 38, 1389 (2015)CrossRefGoogle Scholar
  37. 37.
    P. Guardia, B. Batlle-Brugal, A.G. Roca, O. Iglesias, M.P. Morales, C.J. Serna, A. Labarta, X. Batlle, J. Magn. Magn. Mater. 316, e756 (2017)CrossRefGoogle Scholar
  38. 38.
    M. Respaud, J.M. Broto, H. Rakoto, A.R. Fert, L. Thomas, B. Barbara, M. Verelst, E. Snoeck, P. Lecante, A. Mosset et al., Phys. Rev. B 57, 2925 (1998)CrossRefGoogle Scholar
  39. 39.
    N.M. Al-Hada, E. Saion, Z.A. Talib, A.H. Shaari, Polymers 8, 113 (2016)CrossRefGoogle Scholar
  40. 40.
    T. Ahmad, S. Khatoon, S.E. Lofland, G.S. Thakur, J. Magn. Magn. Mater. 17, 207 (2013)Google Scholar
  41. 41.
    A.A. Dakhel, Mater. Chem. Phys. 130, 398 (2011)CrossRefGoogle Scholar
  42. 42.
    A.A. Dakhel, J. Mater. Sci. 46, 6925 (2011)CrossRefGoogle Scholar
  43. 43.
    X. Chen, C. Burda, J. Am. Chem. Soc. 130, 5018 (2008)CrossRefGoogle Scholar
  44. 44.
    A.M. Bazargan, S.M.A. Fateminia, M. Esmaeilpour Ganji, M.A. Bahrevar, Chem. Eng. J. 155, 523 (2009)CrossRefGoogle Scholar
  45. 45.
    N. Thovhogi, E. Park, E. Manikandan, M. Maaza, A. Gurib-Fakim, J. Alloys Compd. 655, 314 (2016)CrossRefGoogle Scholar
  46. 46.
    W. William Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 15, 2854 (2003)CrossRefGoogle Scholar
  47. 47.
    B. Goswami, A. Choudhury, J. Exp. Nanosci. 10, 900 (2014)CrossRefGoogle Scholar
  48. 48.
    M.A. Flores-Mendoza, R. Castanedo-Perez, G. Torres-Delgado, P. Rodriguez-Fragoso, J.G. Mendoza-Alvarez, O. Zelaya-Angel, J. Lumin. 135, 133 (2012)CrossRefGoogle Scholar
  49. 49.
    K.D. Nisha, M. Navaneethan, Y. Hayakawa, S. Ponnusamy, C. Muthamizhchelvan, J. Alloys Compd. 509, 5816 (2011)CrossRefGoogle Scholar
  50. 50.
    S.J. Helen, S. Devadason, M. Haris, T. Mahalingam, J. Electron. Mater. 47, 2439 (2018)CrossRefGoogle Scholar
  51. 51.
    A.T. Ravichandran, A. Robert Xavier, K. Pushpanathan, B.M. Nagabhushana, R. Chandramohan, J. Mater. Sci.: Mater. Electron. 27, 2693 (2015)Google Scholar
  52. 52.
    K. Anandhan, R. Thilak Kumar, Spectrochim. Acta A 149, 476 (2016)CrossRefGoogle Scholar
  53. 53.
    P. Uckley, P.A. Giguere, Can. J. Chem. 45, 397 (1967)CrossRefGoogle Scholar
  54. 54.
    I.E. Wachs, Physicochem. Colloids Surf. A 105, 143 (1995)CrossRefGoogle Scholar
  55. 55.
    A. Fakhri, R. Khakpour, J. Lumin. 160, 233 (2015)CrossRefGoogle Scholar
  56. 56.
    J. Su, T. Zhang, Y. Li, Y. Chen, M. Liu, Molecules 21, 735 (2016)CrossRefGoogle Scholar
  57. 57.
    I. Fechete, Y. Wang, J.C. Védrine, Catal. Today 189, 2 (2012)CrossRefGoogle Scholar
  58. 58.
    K. Vignesh, M. Rajarajan, A. Suganthi, Ind. Eng. Chem. Res. 20, 3826 (2014)CrossRefGoogle Scholar
  59. 59.
    A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Appl. Catal. B Environ. 31, 145 (2001)CrossRefGoogle Scholar
  60. 60.
    N. Soltani, E. Saion, M.Z. Hussein, M. Erfani, A. Abedini, G. Bahmanrokh, M. Navasery, P. Vaziri, Int. J. Mol. Sci. 13, 12242 (2012)CrossRefGoogle Scholar
  61. 61.
    R. Chauhan, A. Kumar, R.P. Chaudhary, Spectrochim. Acta A 113, 250 (2013)CrossRefGoogle Scholar
  62. 62.
    A.A.P. Mansur, H.S. Mansur, A.J. Caires, R.L. Mansur, L.C. Oliveira, Nanoscale Res. Lett. 12, 443 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry, Faculty of ChemistryUniversity of TabrizTabrizIran

Personalised recommendations