Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 5, pp 3165–3181 | Cite as

Effect of preparation parameters on properties and performance of Pd/Al2O3 catalyst in saturation of olefins

  • Jamaledin Howeizi
  • Saeed Taghvaei-GanjaliEmail author
  • Mercedeh Malekzadeh
  • Fereshteh Motiee
  • Saeed Sahebdelfar
Article
  • 27 Downloads

Abstract

The complete saturation of commercial olefin-containing (3.3 mol%) C4 stream over Pd/γ-Al2O3 catalysts was studied. The catalysts were prepared by wet impregnation of the support using acidified PdCl2 solutions. The effect of different preparation parameters such as HCl/PdCl2 ratio in impregnation solution, impregnation time and solution volume on palladium distribution and catalytic performance was investigated. The catalysts were characterized by N2 adsorption/desorption, ICP measurements, X-ray diffraction, temperature programmed desorption of ammonia (NH3-TPD) and scanning electron microscopy. Catalytic performance tests were carried out in a three-phase co-current trickle-bed reactor at 50 °C, 27 bar and high olefin conversions in accordance with industrial operating conditions. The catalysts showed different palladium distributions according to preparation procedure. The best performance was observed for egg-shell catalysts prepared by employing short impregnation times (5–10 min) and low competitor levels (HCl/PdCl2 = 2.2 mol mol−1) in impregnation solution. The catalyst lifetime was found to correlate with its activity which was explained by a parallel deactivation mechanism.

Graphical abstract

Keywords

Complete saturation Pd/Al2O3 catalyst Impregnation Pd distribution Trickle-bed reactor 

Notes

References

  1. 1.
    Á. Molnár, A. Sárkány, M. Varga, J. Mol. Catal. A Chem. 173, 185 (2001)CrossRefGoogle Scholar
  2. 2.
    F. Nierlich, F. Obenaus, Erdöl Kohle Erdgas Petrochem 39(2), 73 (1986)Google Scholar
  3. 3.
    K.H. Walter, W. Droste, D. Maschmeyer, F. Nierlich, in Selective Hydrogenations and Dehydrogenations, Proceedings of DGMK Conference, Kassel, ed. by M. Baerns, J. Weitkamp (1993) pp. 31–48Google Scholar
  4. 4.
    G.A. Olah, Á. Molnár, G.K.S. Parkash, Hydrocarbon Chemistry, 3rd edn. (Wiley, New York, 2018)Google Scholar
  5. 5.
    M. Takht Ravanchi, S. Sahebdelfar, Palladium as a Catalyst for Selective Hydrogenation: Fundamentals and Applications (Lap Lambert Academic Publishing, Berlin, 2015)Google Scholar
  6. 6.
    G.C. Bond, Metal-Catalyzed Reactions of Hydrocarbons (Springer, New York, 2005)Google Scholar
  7. 7.
    B. Wang, G.F. Froment, Ind. Eng. Chem. Res. 44(26), 9860 (2005)CrossRefGoogle Scholar
  8. 8.
    O. Levenspiel, Chemical Reaction Engineering, 3rd edn. (Wiley, New York, 1999)Google Scholar
  9. 9.
    J. Panpranot, O. Tangjitwattakorn, P. Praserthdam, J.G. Goodwin Jr., Appl. Catal. A Gen. 292, 322 (2005)CrossRefGoogle Scholar
  10. 10.
    M.L. Toebes, J.A. van Dillen, K.P. de Jong, J. Mol. Catal. A Chem. 173, 75 (2001)CrossRefGoogle Scholar
  11. 11.
    O.B. Belskaya, T.I. Gulyaeva, A.B. Arbuzov, V.K. Duplyakin, V.A. Likholobov, Kinet. Catal. 51(1), 105 (2010)CrossRefGoogle Scholar
  12. 12.
    C.D. Tait, D.J. Janecky, P.S.Z. Rogers, Geochim. Cosmochim. Acta 55, 1253 (1991)CrossRefGoogle Scholar
  13. 13.
    L. Espinosa-Alonso, K.P. de Jong, B.M. Weckhuysen, Phys. Chem. Chem. Phys. 12, 97 (2010)CrossRefGoogle Scholar
  14. 14.
    C. Contescu, M.I. Vass, Letter 43(2), 393 (1991)Google Scholar
  15. 15.
    C. Contescu, M.I. Vass, Appl. Catal. 33, 259 (1987)CrossRefGoogle Scholar
  16. 16.
    D. Łomot, W. Juszczyk, A. Karpiński, Appl. Catal. A Gen. 155, 99 (1997)CrossRefGoogle Scholar
  17. 17.
    N.O. Ardiaca, S.P. Bressa, J.A. Alves, O.M. Martinez, G.F. Barreto, Catal. Today 64(3–4), 205 (2001)CrossRefGoogle Scholar
  18. 18.
    Z. Zhou, T. Zeng, Z. Cheng, W. Yuan, Chem. Eng. Sci. 65, 1832 (2010)CrossRefGoogle Scholar
  19. 19.
    Z. Zhou, T. Zeng, Z. Cheng, W. Yuan, Ind. Eng. Chem. Res. 49, 11112 (2010)CrossRefGoogle Scholar
  20. 20.
    S. Komhom, O. Mekasuwandumrong, P. Praserthdam, J. Panpranot, Catal. Commun. 10(1), 86 (2008)CrossRefGoogle Scholar
  21. 21.
    P. Castano, B. Pawelec, J.L.C. Fierro, J.M. Arandes, J. Bilbao, Fuel 86(15), 2262 (2007)CrossRefGoogle Scholar
  22. 22.
    Z.Y. Zakaria, J. Linnekoski, N.A.S. Amin, Chem. Eng. J. 207–208, 803 (2012)CrossRefGoogle Scholar
  23. 23.
    T. Lear, R. Marshall, J.A. Lopez-Sanchez, S.D. Jackson, T.M. Klapötke, M. Bäumer, G. Rupprechter, H.-J. Freund, D. Lennona, J. Chem. Phys. 123, 174706 (2005)CrossRefGoogle Scholar
  24. 24.
    F. Tahriri Zangeneh, A. Taeb, K. Gholivand, S. Sahebdelfar, Appl. Surf. Sci. 357, 172 (2015)CrossRefGoogle Scholar
  25. 25.
    A.M. Shah, J.R. Regalbuto, Langmuir 10, 500 (1994)CrossRefGoogle Scholar
  26. 26.
    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87(9–10), 1051 (2015)Google Scholar
  27. 27.
    Y. Zhang, Y. Zhou, H. Liu, L. Bo, M. Tang, Fuel. Process. Technol. 90, 1524 (2009)CrossRefGoogle Scholar
  28. 28.
    L. Espinosa-Alonso, K.P. de Jong, B.M. Weckhuysen, J. Phys. Chem. C 112, 7201 (2008)CrossRefGoogle Scholar
  29. 29.
    J.T. Richardson, Principles of Catalyst Development (Plenum Press, New York, 1989)CrossRefGoogle Scholar
  30. 30.
    F.A. Gracia, J.T. Miller, A.J. Kropf, E.E. Wolf, J. Catal. 209, 341 (2002)CrossRefGoogle Scholar
  31. 31.
    C.H. Bartholomew, Appl. Catal. A Gen. 212, 17 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jamaledin Howeizi
    • 1
    • 2
  • Saeed Taghvaei-Ganjali
    • 1
    Email author
  • Mercedeh Malekzadeh
    • 1
  • Fereshteh Motiee
    • 1
  • Saeed Sahebdelfar
    • 2
  1. 1.Department of Chemistry, Tehran North BranchIslamic Azad UniversityTehranIran
  2. 2.Catalysis Research Group, Petrochemical Research and Technology CompanyNational Petrochemical CompanyTehranIran

Personalised recommendations