Research on Chemical Intermediates

, Volume 45, Issue 5, pp 3141–3153 | Cite as

A highly selective magnetic solid-phase extraction method for preconcentration of Cd(II) using N,N′-bis(salicylidene)ethylenediamine in water and food samples

  • Maryam Eskandarpour
  • Parastoo Jamshidi
  • Mohammad Reza Moghaddam
  • Jahan B. GhasmeiEmail author
  • Farzaneh Shemirani


In this work, a highly selective method is presented for the preconcentration of cadmium. The developed magnetic solid-phase extraction is based on the adsorption of Cd(II)-N,N′-bis(salicylidene)ethylenediamine (BSE) complex on Fe3O4-embedded graphene oxide nanocomposite. The N,N′-bis(salicylidene)ethylenediamine ligand was used prior to extraction in order to increase the selectivity of the Cd(II) extraction process. Cd(II) concentrations were determined by flame atomic absorption spectroscopy. The ππ interaction between the Cd(II) and BSE complex and graphene oxide results in selective adsorption of the Cd complex compared to complexes of BSE with other heavy metal ions. The central composite design technique was performed to optimize the effective chemical parameters, including pH, amount of adsorbent, and ligand concentration. Under the optimum conditions, the method showed a linear concentration range of 1.0–130.0 ppb, limit of detection of 0.4 ppb with the relative standard deviation of 3.9% for blank solutions (n = 8), and a preconcentration factor of 50 for determination of Cd(II). The kinetics, thermodynamics, and isotherm of the adsorption process were also studied. The proposed method was successfully applied to water and vegetables samples.


N,N′-bis(salicylidene)ethylenediamine Cadmium Central composite design Magnetic solid phase extraction Flame atomic absorption 



This study was funded by the University of Tehran.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Supplementary material

11164_2019_3783_MOESM1_ESM.docx (662 kb)
Supplementary material 1 (DOCX 661 kb)


  1. 1.
    V.K. Gupta, A. Nayak, S. Agarwal, B. Singhal, Comb. Chem. High Throughput Screen. 14(4) (2011)Google Scholar
  2. 2.
    K. Vinod, The Analyst 120(2) (1995)Google Scholar
  3. 3.
    V.K. Gupta, L. Singh, R. Singh, N. Upadhyay, S. Kaur, B. Sethi, J. Mol. Liquids 174 (2012)Google Scholar
  4. 4.
    V.K. Gupta, N. Mergu, L.K. Kumawat, A.K. Singh, Talanta 144 (2015)Google Scholar
  5. 5.
    J.R. Martín, C. De Arana, J. Ramos-Miras, C. Gil, R. Boluda, Environ. Pollut. 196 (2015)Google Scholar
  6. 6.
    Y. Toubi, S. Radi, M. Bacquet, Res. Chem. Intermed. 39(8) (2013)Google Scholar
  7. 7.
    V.K. Gupta, B. Sethi, R. Sharma, S. Agarwal, A. Bharti, J. Mol. Liquids 177 (2013)Google Scholar
  8. 8.
    S.K. Srivastava, V.K. Gupta, S. Jain, Anal. Chem. 68(7) (1996)Google Scholar
  9. 9.
    A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, V.K. Gupta, RSC Adv. 5(24) (2015)Google Scholar
  10. 10.
    A.K. Jain, V.K. Gupta, B.B. Sahoo, L.P. Singh, in Analytical Proceedings including Analytical Communications (Royal Society of Chemistry, 1995), pp. 99–101Google Scholar
  11. 11.
    R.A. Goyer, J. Liu, M.P. Waalkes, Biometals 17(5) (2004)Google Scholar
  12. 12.
    L.N. Kolonel, Cancer 37(4) (1976)Google Scholar
  13. 13.
    M.P. Waalkes, J. Inorg. Biochem. 79(1–4) (2000)Google Scholar
  14. 14.
    X. Lin, Z. Lu, Y. Zhang, B. Liu, G. Mo, J. Li, J. Ye, Microchim. Acta 185(9) (2018)Google Scholar
  15. 15.
    S. Gao, J. Liu, J. Luo, X. Mamat, S. Sambasivam, Y. Li, X. Hu, T. Wågberg, G. Hu, Microchim. Acta 185(6) (2018)Google Scholar
  16. 16.
    V.K. Gupta, M. Ganjali, P. Norouzi, H. Khani, A. Nayak, S. Agarwal, Crit. Rev. Anal. Chem. 41(4) (2011)Google Scholar
  17. 17.
    P. Das, S. Samantaray, G. Rout, Environ. Pollut. 98(1) (1997)Google Scholar
  18. 18.
    O. Sayar, K. Mehrani, F. Hoseinzadeh, A. Mehrani, O. Sadeghi, Microchim. Acta 181(3) (2014)Google Scholar
  19. 19.
    X. Liu, F. Suo, M. He, B. Chen, B. Hu, Microchim. Acta 184(3) (2017)Google Scholar
  20. 20.
    D. Qin, S. Gao, L. Wang, H. Shen, N. Yalikun, P. Sukhrobov, T. Wagberg, Y. Zhao, X. Mamat, G. Hu, Microchim. Acta 184(8) (2017)Google Scholar
  21. 21.
    H. Kahe, M. Chamsaz, G.H. Rounaghi, Food Anal. Methods 9(10) (2016)Google Scholar
  22. 22.
    M.R. Sohrabi, Z. Matbouie, A.A. Asgharinezhad, A. Dehghani, Microchim. Acta 180(7) (2013)Google Scholar
  23. 23.
    D. Yang, L. Wang, Z. Chen, M. Megharaj, R. Naidu, Microchim. Acta 181(11) (2014)Google Scholar
  24. 24.
    C. Hao, Y. Shen, J. Shen, K. Xu, X. Wang, Y. Zhao, C. Ge, Microchim. Acta 183(6) (2016)Google Scholar
  25. 25.
    M.A. Habila, Z.A. ALOthman, A.M. El-Toni, S.A. Al-Tamrah, M. Soylak, J.P. Labis, Microchim. Acta 184(8) (2017)Google Scholar
  26. 26.
    S. Gunduz, S. Akman, Food Anal. Methods 6(6) (2013)Google Scholar
  27. 27.
    M. Hemmati, M. Rajabi, A. Asghari, Microchim. Acta 185(3) (2018)Google Scholar
  28. 28.
    Y. Fan, S. Zhai, N. Liu, J. Lv, Z. Lei, Q. An, Res. Chem. Intermed. 42(2) (2016)Google Scholar
  29. 29.
    V.K. Gupta, A.K. Singh, L.K. Kumawat, Sens. Actuators B Chem. 195 (2014)Google Scholar
  30. 30.
    M. Sun, R. Tang, Q. Wu, C. Wang, Z. Wang, Food Anal. Methods 7(5) (2014)Google Scholar
  31. 31.
    X. Wu, R. Zhang, X. Liu, W. Guan, X. Liu, Z. Wang, Y. Ma, C. Pan, Food Anal. Methods 8(1) (2015)Google Scholar
  32. 32.
    S. Smarzewska, W. Ciesielski, Food Anal. Methods 8(3) (2015)Google Scholar
  33. 33.
    S. Nazari, A. Mehri, A.S. Hassannia, Microchim. Acta 184(9) (2017)Google Scholar
  34. 34.
    A. Amiri, M. Baghayeri, M. Sedighi, Microchim. Acta 185(8) (2018)Google Scholar
  35. 35.
    L. Adlnasab, M. Ezoddin, M.A. Karimi, N. Hatamikia, Res. Chem. Intermed. 44(5) (2018)Google Scholar
  36. 36.
    Q. Yin, Y. Zhu, S. Ju, W. Liao, Y. Yang, Res. Chem. Intermed. 42(5) (2016)Google Scholar
  37. 37.
    A.A. Momen, G.A. Zachariadis, A.N. Anthemidis, J.A. Stratis, Microchim. Acta 160(4) (2008)Google Scholar
  38. 38.
    D. Vázquez, M. Tascón, L. Deban, Food Anal. Methods 5(3) (2012)Google Scholar
  39. 39.
    M. Taghizadeh, A.A. Asgharinezhad, N. Samkhaniany, A. Tadjarodi, A. Abbaszadeh, M. Pooladi, Microchim. Acta 181(5) (2014)Google Scholar
  40. 40.
    S. Rezabeyk, M. Manoochehri, Microchim. Acta 185(8) (2018)Google Scholar
  41. 41.
    W. Jianming, G. Yuan, L. Ping, H. Feng, L. Liying, Food Anal. Methods 6(1) (2013)Google Scholar
  42. 42.
    J.L. Manzoori, M. Amjadi, Microchim. Acta 143(1) (2003)Google Scholar
  43. 43.
    Y. Fang, W. Tian, F. Pei, P. Li, X. Shao, Y. Fan, Q. Hu, Food Chem. 229 (2017)Google Scholar
  44. 44.
    M. Jabri, E. Mejdoubi, M. El Gadi, B. Hammouti, Res. Chem. Intermed. 39(2) (2013)Google Scholar
  45. 45.
    M. Ghaedi, M. Roosta, A.M. Ghaedi, A. Ostovan, I. Tyagi, S. Agarwal, V.K. Gupta, Res. Chem. Intermed. 44(5) (2018)Google Scholar
  46. 46.
    M.L. Waters, Curr. Opin. Chem. Biol. 6(6) (2002)Google Scholar
  47. 47.
    F. Omidi, M. Behbahani, M.K. Bojdi, S.J. Shahtaheri, J. Magn. Magn. Mater. 395 (2015)Google Scholar
  48. 48.
    A. Mirabi, Z. Dalirandeh, A.S. Rad, J. Magn. Magn. Mater 381 (2015)Google Scholar
  49. 49.
    M. Tuzen, S. Sahiner, B. Hazer, Food Chem. 210 (2016)Google Scholar
  50. 50.
    A.A. Gouda, S.M. Al Ghannam, Food Chem. 202 (2016)Google Scholar
  51. 51.
    E. Ghorbani-Kalhor, Microchim. Acta 183(9) (2016)Google Scholar
  52. 52.
    K. Molaei, H. Bagheri, A.A. Asgharinezhad, H. Ebrahimzadeh, M. Shamsipur, Talanta 167 (2017)Google Scholar
  53. 53.
    M.A. Habila, Z.A. ALOthman, E. Yilmaz, M. Soylak, Int. J. Environ. Anal. Chem. 98(2) (2018)Google Scholar
  54. 54.
    V. Kazantzi, A. Kabir, K.G. Furton, A. Anthemidis, Microchem. J. 137 (2018)Google Scholar
  55. 55.
    S. Arghavani-Beydokhti, M. Rajabi, A. Asghari, Anal. Methods 10(11) (2018)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Chemistry, College of ScienceUniversity of TehranTehranIran

Personalised recommendations