Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 5, pp 3019–3032 | Cite as

Modulating of facets-dependent oxygen vacancies on ceria and its catalytic oxidation performance

  • Chao Ren
  • Renchun YangEmail author
  • Yaoyao Li
  • Hong Wang
Article
  • 30 Downloads

Abstract

To study the correlation between crystal facets and oxygen vacancies, three kinds of ceria samples with various crystal facets, cube [100], rod [110] and octahedron [111], were prepared. For further comparison, two kinds of ceria samples with [110] facets (20–30 nm rod and 5–8 nm filiform) were also constructed. The morphology, crystal structure, surface composition, reducibility and oxygen defects of the prepared samples were characterized by SEM, XRD, N2 adsorption–desorption, H2-TPR, XPS and EPR, respectively. The results showed that the surface oxygen defect contents of the samples followed the order: CeO2–F > CeO2–C > CeO2–R > CeO2–O, indicating that the content of oxygen vacancies is closely related on the crystal facets. The catalytic performance of the samples are all in line with that of the Oads/Olatt ratios, suggesting that crystal facets play a crucial role on surface oxygen vacancies and phenol oxidation of the ceria samples. Furthermore, although the CeO2–R sample (rods) and the CeO2–F sample (filiform) are mainly enclosed by [110] facets, the CeO2–F showed better catalytic performance than that of CeO2–R, revealing that the phenol oxidation not only depends on the crystal facets of CeO2 but also with its surface oxygen vacancy contents.

Keywords

Filiform CeO2 Crystal facets Oxygen vacancies Catalytic oxidation 

Notes

Acknowledgements

This work is supported by National Nature Science Foundation of China (51572004, 21504001), Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (KJ2016SD06), Natural Science Fund for Distinguished Young Scholars from Anhui Polytechnic University (2016JQ01), and Top-notch Talent Cultivation Plan from Anhui Polytechnic University (2016BJRC002).

References

  1. 1.
    R.P. Rocha, S.G.P. Soares, A.G. Gonçalves, J.J.M. Órfão, M.F.R. Pereira, J.L. Figueiredo, Appl. Catal. A Gen. 548, 62 (2017)CrossRefGoogle Scholar
  2. 2.
    R.S. Ribeiro, A.M.T. Silva, P.B. Tavaresc, J.L. Figueiredo, J.L. Faria, H.T. Gomes, Catal. Today 280, 184 (2017)CrossRefGoogle Scholar
  3. 3.
    N.D. Pajić, P. Djinović, G. Dražić, J. Grdadolnik, P. Šket, J. Cerkovnik, A. Pintar, Appl. Catal. A Gen. 562, 276 (2018)CrossRefGoogle Scholar
  4. 4.
    A. Białas, M. Mazur, P. Natkański, B. Dudek, M. Kozak, A. Wach, P. Kuśtrowski, Appl. Sur. Sci. 362, 297 (2016)CrossRefGoogle Scholar
  5. 5.
    M. Konsolakis, M. Sgourakis, S.A.C. Carabineiro, Appl. Sur. Sci. 341, 48 (2015)CrossRefGoogle Scholar
  6. 6.
    A.S. Barge, P.D. Vaidya, J. Environ. Manage. 212, 479 (2018)CrossRefGoogle Scholar
  7. 7.
    R.P. Rocha, O.S.G.P. Soares, A.G. Gonçalves, Appl. Catal. A Gen. 549, 62 (2017)CrossRefGoogle Scholar
  8. 8.
    A. Katsoni, H.T. Gomes, L.M. Pastrana–Martínez, J.L. Faria, J.L. Figueiredo, D. Mantzavinos, A.M.T. Silva, Chem. Eng. J. 172, 634 (2010)CrossRefGoogle Scholar
  9. 9.
    S. Yang, W. Zhu, X. Li, J. Wang, Y. Zhou, Cata. Commun. 8, 2059 (2007)CrossRefGoogle Scholar
  10. 10.
    Y. Liu, D. Sun, Appl. Catal. B Environ. 72, 205 (2007)CrossRefGoogle Scholar
  11. 11.
    L. Liu, J. Shi, R. Wang, H. Cao, Z. Liu, J. Alloy. Compd. 725, 544 (2017)CrossRefGoogle Scholar
  12. 12.
    D.K. Mondal, C. Mondal, S. Roy, RSC Adv. 6, 110383 (2016)CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, Z. Zhang, Q. Yan, Q. Wang, Appl. Catal. A: Gen. 511, 47 (2016)CrossRefGoogle Scholar
  14. 14.
    F. Arena, C. Italiano, A. Raneri, C. Saja, Appl. Catal. B-Environ. 99, 321 (2010)CrossRefGoogle Scholar
  15. 15.
    H. Sun, X. Peng, S. Zhang, S. Liu, Y. Xiong, S. Tian, Bioresour. Technol. 241, 244 (2017)CrossRefGoogle Scholar
  16. 16.
    J. Qu, S. Shu, H. Wang, Z. Cao, H. Liu, Int. J. Electrochem. Sc. 12, 9640 (2017)CrossRefGoogle Scholar
  17. 17.
    X. Guo, J. Mao, R. Zhou, J. Power Sources 371, 119 (2017)CrossRefGoogle Scholar
  18. 18.
    G. Vilé, S. Colussi, F. Krumeich, A. Trovarelli, Ange. Chem. 53, 12069 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Li, Z. Wei, F. Gao, L. Kovarik, R.A.L. Baylon, C.H.F. Peden, Y. Wang, ACS Catal. 5, 3006 (2015)CrossRefGoogle Scholar
  20. 20.
    S.T. Hossain, E. Azeeva, K. Zhang, E.T. Zell, D.T. Bernard, S. Blaza, R. Wang, Appl. Surf. Sci. 455, 132 (2018)CrossRefGoogle Scholar
  21. 21.
    E. Mamontov, T. Egami, R. Brezny, M. Koranne, S. Tyagi, J. Phys. Chem. B 104, 11110 (2000)CrossRefGoogle Scholar
  22. 22.
    A.M. D’Angelo, N.A.S. Webster, A.L. Chaffee, Inorg. Chem. 55, 12595 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Lykaki, E. Pachatouridou, S.A.C. Carabineiro, E. Iliopoulou, C. Andriopoulou, N. Kallithrakas-Kontos, S. Boghosian, M. Konsolakis, Appl. Catal. B-Environ. 230, 18 (2018)CrossRefGoogle Scholar
  24. 24.
    A. Singhania, S.M. Gupta, J. Nanosci. Nanotechno. 18, 4614 (2018)CrossRefGoogle Scholar
  25. 25.
    R. Yang, C. Ren, X. Teng, Z. Chen, S. Wu, W. Zhang, Catal. Lett. 147, 727 (2017)CrossRefGoogle Scholar
  26. 26.
    K. Kasinathan, J. Kennedy, M. Elayaperumal, M. Henini, M. Malik, Sci. Rep. 6, 38064 (2016)CrossRefGoogle Scholar
  27. 27.
    K. Kaviyarasu, A. Ayeshamariam, E. Manikandan, J. Kennedy, R. Ladchumananandasivam, U.U. Gomes, M. Jayachandran, M. Maaza, Mat. Sci. Eng. B Solid 210, 1 (2016)CrossRefGoogle Scholar
  28. 28.
    C. Maria Magdalane, K. Kaviyarasu, J. Judith Vijaya, B. Siddhardha, B. Jeyaraj, J. Photoch. Photobio. B Biol. 163, 77 (2016)CrossRefGoogle Scholar
  29. 29.
    K. Kaviyarasu, X. Fuku, G.T. Mola, E. Manikandan, J. Kennedy, M. Maaza, Mater. Lett. 183, 351 (2016)CrossRefGoogle Scholar
  30. 30.
    C.M. Magdalane, K. Kaviyarasu, J.J. Vijaya, C. Jayakumar, M. Maaza, B. Jeyaraj, J. Photoch. Photobio. B Biol. 169, 110 (2017)CrossRefGoogle Scholar
  31. 31.
    C.M. Magdalane, K. Kaviyarasu, J.J. Vijaya, B. Siddhardha, B. Jeyaraj, J. Kennedy, M. Maaza, J. Alloy. Compd. 727, 1324 (2017)CrossRefGoogle Scholar
  32. 32.
    K. Kaviyarasu, P.P. Murmu, J. Kennedy, F.T. Thema, D. Letsholathebe, L. Kotsedi, M. Maaza, Nucl. Instrum. Meth. B 409, 147 (2017)CrossRefGoogle Scholar
  33. 33.
    K. Kaviyarasu, E. Manikandan, Z.Y. Nuru, M. Maaza, Mater. Lett. 160, 61 (2015)CrossRefGoogle Scholar
  34. 34.
    Y.S. Reddy, C.M. Magdalane, K. Kaviyarasu, G.T. Mola, J. Kennedy, M. Maaza, J. Physics Chem. Solids 123, 43 (2018)CrossRefGoogle Scholar
  35. 35.
    A. Rajaa, S. Ashokkumar, R.P. Marthandam, J. Jayachandiran, C.P. Khatiwada, K. Kaviyarasu, R.G. Raman, M. Swaminathan, J. Photoch. Photobio. B Biol. 181, 53 (2018)CrossRefGoogle Scholar
  36. 36.
    X. Wang, C. Liu, B. Zheng, Y.Q. Jiang, L. Zhang, Z.X. Xie, L.S. Zheng, J. Mater. Chem. A 1, 282 (2013)CrossRefGoogle Scholar
  37. 37.
    F. Kleitz, F. Bérubé, R. Guillet-Nicolas, C. Yang, M. Thommes, J. Phys. Chem. C 114, 9344 (2010)CrossRefGoogle Scholar
  38. 38.
    R. Yang, L. Yang, T. Tao, F. Ma, M. Xu, Z. Zhang, Appl. Surf. Sci. 288, 363 (2014)CrossRefGoogle Scholar
  39. 39.
    T. Naganuma, E. Traversa, Nanoscale 4, 4950 (2012)CrossRefGoogle Scholar
  40. 40.
    Y. Liu, H. Dai, Y. Du, J. Deng, L. Zhang, Z. Zhao, C.T. Au, J. Catal. 287, 149 (2012)CrossRefGoogle Scholar
  41. 41.
    J.H. Scofield, J. Electr, Spectrosc. Relat. Phenom. 8, 129 (1976)CrossRefGoogle Scholar
  42. 42.
    Z. Xie, X. Zhou, H. Wu, H. Zhao, Y. Liu, H. Chen, Catal. Lett. 146, 1355 (2016)CrossRefGoogle Scholar
  43. 43.
    X. Gao, Y. Wu, T. Zhang, L. Wang, X. Li, H. Xie, Y. Tan, Catal. Sci. Technol. 8, 2975 (2018)CrossRefGoogle Scholar
  44. 44.
    C. Li, Y. Sun, I. Djerdj, P. Vöpel, C.C. Sack, T. Weller, J. Sann, R. Ellinghaus, Y. Guo, B.M. Smarsly, H. Over, ACS Catal. 7, 6453 (2017)CrossRefGoogle Scholar
  45. 45.
    K. Turhan, S. Uzman, Desalination 229, 257 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Biological and Chemical EngineeringAnhui Polytechnic UniversityWuhuChina

Personalised recommendations