Advertisement

Lanthanum(III) complex as ferromagnetic supraprecursor for preparation of La2O3 nanoparticles by thermal decomposition method

  • Zohreh RazmaraEmail author
Article

Abstract

A metal–organic framework lanthanum(III) complex with formula ([La(pydc)2(H2O)3]·4H2O)n (1), where pydc = pyridine-2,6-dicarboxylic acid, was synthesized through a sonochemical process. Complex 1 was characterized using elemental analysis, atomic absorption spectroscopy, conductivity measurements, Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis, photoluminescence spectroscopy, vibrating-sample magnetometry (VSM), and single-crystal X-ray diffraction (SC-XRD) analysis. La2O3 nanostructure was simply prepared by calcination of complex 1 at 700 °C. The structural properties of La2O3 nanoparticles were studied by FT-IR spectroscopy, XRD analysis, scanning electron microscopy, and VSM. The effect of the preparation method (thermal degradation, coprecipitation, or impregnation) on the shape, size, agglomeration, and Brunauer–Emmett–Teller (BET) surface area of the La2O3 nanoparticles was investigated. Comparison of the data revealed that nanoparticles derived from the inorganic complex had smaller size and higher BET specific surface area.

Keywords

Lanthanum complex Luminescent properties Metal–organic framework La2O3 Magnetic properties 

Notes

Acknowledgements

The authors are grateful to the University of Zabol for support of this work.

References

  1. 1.
    D.-Y. Ma, Z. Li, J.-X. Xiao, R. Deng, P.-F. Lin, R.-Q. Chen, Y.-Q. Liang, H.-F. Guo, J.-Q. Liu, Inorg. Chem. 54, 6719 (2015)CrossRefGoogle Scholar
  2. 2.
    P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, C. Serre, Chem. Rev. 112(2), 1232 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Lammert, M.T. Wharmby, S. Smolders, B. Bueken, A. Lieb, K.A. Lomachenko, D. de Vos, N. Stock, Chem. Commun. 51, 12578 (2015)CrossRefGoogle Scholar
  4. 4.
    P. Valvekens, M. Vandichel, M. Waroquier, V. Van Speybroeck, D. de Vos, J. Catal. 317, 1 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi, Science 295, 469 (2002)CrossRefGoogle Scholar
  6. 6.
    R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R.V. Belosludov, R.C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Nature 436, 238 (2005)CrossRefGoogle Scholar
  7. 7.
    K.L. Hou, F.Y. Bai, Y.H. Xing, Y.Z. Cao, D.M. Wei, S.Y. Niu, J. Inorg. Organomet. Polym. 21, 213 (2001)CrossRefGoogle Scholar
  8. 8.
    E. Falco, L. Goodwin, G. Hitchings, I. Rollo, P. Russell, Br. J. Pharmacol 6, 185 (1951)Google Scholar
  9. 9.
    A. Osowole, E. Akpan, Eur. J. Appl. Sci 4, 14 (2012)Google Scholar
  10. 10.
    T. Koetzle, G. Williams, J. Am. Chem. Soc. 98, 2074 (1976)CrossRefGoogle Scholar
  11. 11.
    H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, Science 341(6149), 1230444 (2013)CrossRefGoogle Scholar
  12. 12.
    T. Kido, Y. Ikuta, Y. Sunatsuki, Y. Ogawa, N. Matsumoto, Inorg. Chem. 42, 398 (2003)CrossRefGoogle Scholar
  13. 13.
    C. Yang, L.M. Fu, Y. Wang, J.P. Zhang, W.T. Wong, X.C. Ai, L.L. Gui, Angew. Chem 116(38), 5120 (2004)CrossRefGoogle Scholar
  14. 14.
    C. Qin, X.L. Wang, E.B. Wang, Z.M. Su, Inorg. Chem. 44(20), 7122 (2005)CrossRefGoogle Scholar
  15. 15.
    T.E. Eriksen, I. Grenthe, I. Puigdomenech, Inorg. Chim. Act 126(1), 131 (1987)CrossRefGoogle Scholar
  16. 16.
    Y. Ducommun, L. Helm, G. Laurenczy, A.E. Merbach, Inorg. Chim. Acta 158, 3 (1989)CrossRefGoogle Scholar
  17. 17.
    D. Ventur, K. Wieghardt, J.Z. Weiss, Anorg. Allg. Chem. 524, 40 (1985)CrossRefGoogle Scholar
  18. 18.
    X.Y. Zhou, N.M. Kostic, Inorg. Chem. 27, 4402 (1988)CrossRefGoogle Scholar
  19. 19.
    W. Furst, P. Gouzerh, Y. Jeannin, J. Coord. Chem 8(4), 237 (1979)CrossRefGoogle Scholar
  20. 20.
    M.G. Drew, G.W.A. Fowles, R.W. Matthews, R.A. Walton, J. Am. Chem. Soc 91(27), 7769 (1969)CrossRefGoogle Scholar
  21. 21.
    K. Murakami, Y. Tanemura, M. Yoshino, J. Nutr. Biochem. 14, 99 (2003)CrossRefGoogle Scholar
  22. 22.
    G.A. Burdock, Encyclopedia of Food and Color Additives, 3 (CRC Press, New York, 1996)Google Scholar
  23. 23.
    K. Bridger, R.C. Patel, E. Matijević, Polyhedron 1(3), 269 (1982)CrossRefGoogle Scholar
  24. 24.
    P. Laine, A. Gourdon, J.P. Launay, Inorg. Chem. 34(21), 5129 (1995)CrossRefGoogle Scholar
  25. 25.
    M. Salavati-Niasari, F. Davar, M. Mazaheri, Mater. Lett. 62, 1890 (2008)CrossRefGoogle Scholar
  26. 26.
    S.M. Latifi, A. Salehirad, Kor. J. Chem. Eng. 33(2), 473 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Saheli, A.R. Rezvani, A. Malekzadeh, M. Dusek, V. Eigner, Int. J. Hydrogen Energy 43(2), 685 (2018)CrossRefGoogle Scholar
  28. 28.
    A. Gurav, T. Kodas, T. Pluym, Y. Xiong, Aerosol. Sci. Tech 19(4), 411 (1993)CrossRefGoogle Scholar
  29. 29.
    M. Salavati-Niasari, G. Hosseinzadeh, F. Davar, J. Alloys Compd. 509(1), 134 (2011)CrossRefGoogle Scholar
  30. 30.
    S. Hironari, Y. Nakano, H. Matsushita, A. Onoe, H. Kanai, Y. Yamashita, J. Mater. Synth. Process. 6, 415 (1998)CrossRefGoogle Scholar
  31. 31.
    S. Lian, E. Wang, Z. Kang, Y. Bai, L. Gao, M. Jiang, C. Hu, L. Xu, Solid State Commun. 129, 485 (2004)CrossRefGoogle Scholar
  32. 32.
    H.M. Lin, S.J. Tzeng, P.J. Hsiau, W.L. Tsai, Nanostruct. Mater. 10, 465 (1998)CrossRefGoogle Scholar
  33. 33.
    A.K. Li, W.T. Wu, Key Eng. Mater. 247, 405 (2003)CrossRefGoogle Scholar
  34. 34.
    N. Cordente, C. Amiens, B. Chaudret, M. Respaud, F. Senocq, M.J. Casanove, J. Appl. Phys. 94, 6358 (2003)CrossRefGoogle Scholar
  35. 35.
    J.H. Kim, W.C. Choi, H.Y. Kim, Y. Kang, Y.-K. Park, Powder Technol. 153, 166 (2005)CrossRefGoogle Scholar
  36. 36.
    M.L. Kahn, M. Monge, Adv. Funct. Mater. 3, 458 (2005)CrossRefGoogle Scholar
  37. 37.
    H. Zhu, C. Zhang, Y. Yin, Nanotechnology 16, 3079 (2005)CrossRefGoogle Scholar
  38. 38.
    S. Sharif, I.U. Khan, O. Şahin, S. Ahmad, O. Büyükgüngör, S. Ali, J. Inorg. Organ. Polym. 22(5), 1165 (2012)CrossRefGoogle Scholar
  39. 39.
    M.V. Kirillova, M.F.C.G. da Silva, A.M. Kirillov, J.J.F. da Silva, A.J. Pombeiro, Inorg. Chim. Acta 360, 506 (2007)CrossRefGoogle Scholar
  40. 40.
    M. Cai, J. Chen, M. Taha, Inorg. Chem. Commun. 13, 199 (2010)CrossRefGoogle Scholar
  41. 41.
    K. Akhbari, A. Morsali, J. Iran. Chem. Soc. 5, 48 (2008)CrossRefGoogle Scholar
  42. 42.
    G. Varasanyi, Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives (Wiley, New York, 1974)Google Scholar
  43. 43.
    F. Marandi, M. Ghorbanloo, A.A. Soudi, J. Coord. Chem. 60, 1557 (2007)CrossRefGoogle Scholar
  44. 44.
    N. Alfi, A. Rezvani, M. Khorasani-Motlagh, M. Noroozifar, Int. J. Hydrogen Energy 42(30), 18991 (2017)CrossRefGoogle Scholar
  45. 45.
    A.R.S. Rad, M.B. Khoshgouei, S. Rezvani, A.R. Rezvani, Fuel Process. Technol. 96, 9 (2012)CrossRefGoogle Scholar
  46. 46.
    J. Farzanfar, A.R. Rezvani, C. R. Chim. 8(2), 178 (2015)CrossRefGoogle Scholar
  47. 47.
    Q. Xu, D. Gao, J. Zhang, Z. Yang, Z. Zhang, J. Rao, D. Xue, Appl. Phys. A 116(3), 1293 (2014)CrossRefGoogle Scholar
  48. 48.
    Q.Y. Wen, H.W. Zhang, Y.Q. Song, Q.H. Yang, J. Appl. Phys. 103, 07D120 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of ZabolZabolIran

Personalised recommendations