Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 5, pp 2855–2867 | Cite as

Facile preparation of BiVO4 thin film by screen-printing technique for its photocatalytic performance in the degradation of tetracycline under simulated sunlight irradiation

  • D. B. Hernández-Uresti
  • D. Sánchez-MartínezEmail author
  • J. Vallejo-Márquez
  • S. Obregón
  • A. Vázquez
Article
  • 155 Downloads

Abstract

BiVO4 films were prepared by a screen-printing technique on Corning glass substrate. The material employed to prepare the films was synthetized by the hydrothermal method. For comparative purposes, the BiVO4 was synthesized via solid state reaction and deposited in film form by the same technique. From the X-ray diffraction structural characterization it has been stated that BiVO4 films crystallized in the monoclinic structure. The characterization of BiVO4 films was complemented with scanning electron microscopy, which revealed a morphology of irregular form and dendritic type depending on the starting material. The thickness of the BiVO4 films were determined by profilometry. The film obtained from the hydrothermal method showed minor photoluminescence, i.e., the sample showed low recombination of electron–hole pairs. The highest photocatalytic activity in the degradation of tetracycline (TC) was presented for the BiVO4 films obtained from hydrothermal powders under simulated sunlight irradiation; attributed mainly to the surface area value, smaller particle size and lower recombination of electron–hole pairs. Mineralization degree of TC by BiVO4 films was determined by the total organic carbon analysis, reaching 50% after 24 h of irradiation. The main oxidizing species that was most influenced in the degradation of TC was the hydroxyl radical (OH·).

Keywords

BiVO4 film Screen-printing Tetracycline Oxidizing species Scavengers Photocatalysis 

Notes

Acknowledgements

The authors wish to thank the Universidad Autónoma de Nuevo León (UANL) for its invaluable support; CONACYT, for support of Project CB-2013-01 Clave: 220802, Problemas Nacionales PN-2015-01-610; SEP, for support of Project PFCE 2017–2018 Apoyo al CA-UANL-244, REDES TEMÁTICAS 2015-CA-UANL-244 and SEP-PRODEP for the support through the program “Apoyo a NPTC” clave 511-6/17-7538.

References

  1. 1.
    P. Gleick, Water in Crisis. A Guide to the World’s Fresh Water Resources (Oxford University Press, Oxford, 1993)Google Scholar
  2. 2.
    M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Nature 452, 301 (2008)CrossRefGoogle Scholar
  3. 3.
    C.G. Daughton, A.T. Ternes, Environ. Health Perspect. 107, 909 (1999)CrossRefGoogle Scholar
  4. 4.
    J. Rivera-Utrilla, M. Sánchez-Polo, M. Ferro-García, G. Prados-Joya, R. Ocampo-Pérez, Chemosphere 93, 1268 (2013)CrossRefPubMedGoogle Scholar
  5. 5.
    J. Wan, X. Du, R. Wang, E. Liu, J. Jia, X. Bai, X. Hu, J. Fan, Chemosphere 193, 737 (2018)CrossRefPubMedGoogle Scholar
  6. 6.
    R. Chol-Nam, K. Song-Gol, J. Kyong-Sik, R. Hyok-Su, M. Chol-Ho, K. U-Hyon, RSC Adv. 8, 5433 (2018)CrossRefGoogle Scholar
  7. 7.
    L. Yonghyeon, C. MingCan, C. Jongbok, K. Jeonggwan, S. Younggyu, K. Jeehyeong, J. Hazard. Mater. 344, 1116 (2018)CrossRefGoogle Scholar
  8. 8.
    S. Hernández, G. Gerardi, K. Bejtka, A. Fina, N. Russo, Appl. Catal. B 190, 66 (2016)CrossRefGoogle Scholar
  9. 9.
    L. Xi, Z. Jin, Z. Sun, R. Liu, L. Xu, Appl. Catal. A 536, 67 (2017)CrossRefGoogle Scholar
  10. 10.
    D. Sánchez-Martínez, D.B. Hernández-Uresti, L.M. Torres-Martinez, S. Mejia-Rosales, Res. Chem. Intermed. 41, 8839 (2015)CrossRefGoogle Scholar
  11. 11.
    S.M. Thalluri, S. Hernandez, S. Bensaid, G. Saracco, N. Russo, Appl. Catal. B 180, 630 (2016)CrossRefGoogle Scholar
  12. 12.
    L. Ting, T. Guoqiang, Z. Chengcheng, X. Chi, S. Yuning, W. Ying, R. Huijun, X. Ao, S. Dan, Y. Shemin, Appl. Catal. B 213, 87 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Selvarajan, A. Suganthi, M. Rajarajan, K. Arunprasth, Powder Technol. 307, 203 (2017)CrossRefGoogle Scholar
  14. 14.
    S. Usai, S. Obregón, A.I. Becerro, G. Colón, J. Phys. Chem. C 117, 24479 (2013)CrossRefGoogle Scholar
  15. 15.
    J. Resasco, N. Zhang, H. Kornienko, N. Becknell, H. Lee, J. Guo, A.L. Briseno, P. Yang, ACS Central Sci. 2, 80 (2016)CrossRefGoogle Scholar
  16. 16.
    F.L. Osmando, T.G. Kele, A. Waldir, R. Caue, J. Phys. Chem. C 121, 13747 (2017)CrossRefGoogle Scholar
  17. 17.
    H. Yanhui, Y. Huili, C. Hang et al., App. Phys. A 123, 611 (2017)CrossRefGoogle Scholar
  18. 18.
    A. Adenle, M. De-Kun, Q. De-Peng, C. Wei, H. Shaoming, Cryst. Eng. Comm. 19, 6305 (2017)CrossRefGoogle Scholar
  19. 19.
    A. Iwase, S. Yoshino, T. Takayama, Y.H. Ng, R. Amal, A. Kudo, J. Am. Chem. Soc. 138, 10260 (2016)CrossRefGoogle Scholar
  20. 20.
    T. Wang, C. Li, J. Ji, Y. Wei, P. Zhang, S. Wang, X. Fan, I. Gong, A.C.S. Sustain, Chem. Eng. 2, 2253 (2014)Google Scholar
  21. 21.
    M. Ou, S. Wan, Q. Zhong, S. Zhang, Y. Song, L. Guo, W. Cai, Y. Xu, Appl. Catal. B 221, 97 (2018)CrossRefGoogle Scholar
  22. 22.
    Q. Meng, H. Lv, M. Yuan, Z. Chen, X. Wang, ACS Omega 2, 2728 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    H.L. Tan, R. Amal, Y.H. Ng, J. Mater. Chem. A 5, 16498 (2017)CrossRefGoogle Scholar
  24. 24.
    S.J. Hyeok, G. Park, K.H. Oh, S. Kang, H.C. Lee, S. Cho, K. Nam, J. Electroanal. Chem. 789, 17 (2017)CrossRefGoogle Scholar
  25. 25.
    L. Xia, J. Bai, J. Li, Q. Zeng, L. Li, B. Zhou, Appl. Catal. B 204, 127 (2017)CrossRefGoogle Scholar
  26. 26.
    Z. Xiang, Y. Wang, P. Ju, D. Zhang, J. Electron. Mater. 46, 758 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Iwase, H. Ito, Q. Jia, A. Kudo, Chem. Lett. 45, 152 (2016)CrossRefGoogle Scholar
  28. 28.
    T. Sreethawong, Y. Suzuki, S. Yoshikawa, J. Solid State Chem. 178, 329 (2005)CrossRefGoogle Scholar
  29. 29.
    N. Rungjaroentawon, S. Onsuratoom, S. Chavadej, Int. J. Hydrogen Energy 37, 11061 (2012)CrossRefGoogle Scholar
  30. 30.
    C. Karunakaran, S. Kalaivani, P. Vinayagamoorthy, S. Dash, Mater. Sci. Semicond. Process. 21, 122 (2014)CrossRefGoogle Scholar
  31. 31.
    D. Sánchez-Martínez, I. Juárez-Ramírez, L.M. Torres-Martínez, I. de León-Abarte, Ceram. Int. 42, 2013 (2016)CrossRefGoogle Scholar
  32. 32.
    Y. Deng, Chem. Eng. J. 337, 220 (2018)CrossRefGoogle Scholar
  33. 33.
    J.C. Duran-Álvarez, E. Avella, R.M. Ramírez-Zamora, R. Zanella, Catal. Today 266, 175 (2016)CrossRefGoogle Scholar
  34. 34.
    D. Sánchez-Martínez, D.B. Hernández-Uresti, L.M. Torres-Martínez, S. Mejia-Rosales, Res. Chem. Intermed. 41, 8839 (2015)CrossRefGoogle Scholar
  35. 35.
    C. Sengottaiyan, N. Abdul, R. Jayavel, R. Goswami, T. Subramani, S. Sankar, J.P. Hill, L.K. Shrestha, K. Ariga, J. Solid State Chem. 269, 409 (2019)CrossRefGoogle Scholar
  36. 36.
    X. Zhang, R. Wang, F. Li, Z. An, M. Pu, X. Xiang, Ind. Eng. Chem. Res. 56, 10711 (2017)CrossRefGoogle Scholar
  37. 37.
    W. He, R. Wang, C. Zhou, J. Yang, F. Li, X. Xiang, Ind. Eng. Chem. Res. 54, 10723 (2015)CrossRefGoogle Scholar
  38. 38.
    R. Wang, L. Luo, X. Zhu, Y. Yan, B. Zhang, X. Xiang, J. He, Appl. Energy Mater. 1, 3577 (2018)CrossRefGoogle Scholar
  39. 39.
    P.L. Darren, L.L. Julie, Int. J. Pharm. 530, 364 (2017)CrossRefGoogle Scholar
  40. 40.
    D. Cao, Y. Wang, M. Qiao, X. Zhao, J. Catal. 360, 240 (2018)CrossRefGoogle Scholar
  41. 41.
    S. Obregón, D.B. Herández-Uresti, A. Vázquez, D. Sanchez-Martinez, Appl. Surf. Sci. 457, 501 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias Físico MatemáticasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Departamento de Ecomateriales y Energía, Facultad de Ingeniería CivilUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  3. 3.Facultad de Ciencias QuímicasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico

Personalised recommendations