Research on Chemical Intermediates

, Volume 45, Issue 5, pp 2797–2809 | Cite as

Preparation of Ag-doped Bi5O7I composites with enhanced visible-light-induced photocatalytic performance

  • Lu Wang
  • Xi LiEmail author
  • Yongzhi Dong
  • Xiaozheng Li
  • Mei Chu
  • Na Li
  • Yulin Dong
  • Zhizhong Xie
  • Yawei Lin
  • Weiquan Cai
  • Chaocan ZhangEmail author


A novel heterostructure photocatalysts, Ag-doped Bi5O7I composites (Ag/Bi5O7I), were synthesized by a simple hydrothermal method. Compared with Bi5O7I, Ag/Bi5O7I composites had a stronger light absorption in the visible and near-infrared region and the light absorption edge of Ag/Bi5O7I composites had a slight red shift. Moreover, Ag/Bi5O7I composites possessed a higher photocatalytic activity than Bi5O7I on the degradation of rhodamine B (RhB) and methyl orange (MO) under visible-light irradiation (λ ≥ 420 nm). When the content of Ag was 1%, the degradation efficiency of the Ag/Bi5O7I composites toward RhB and MO reached the maximum value, which was about 20.2 and 7.6 times higher than that of Bi5O7I, respectively. The trapping experiments shown that superoxide radicals and holes were the main active species in the photodegradation process. The excellent photocatalytic performance could be attributed to Ag/Bi5O7I heterojunction and surface plasma resonance effect of Ag, which could increase absorption of visible light and cause the efficient separation and migration of carriers.


Heterostructure photocatalysts Ag-doped Bi5O7Visible-light Surface plasma resonance 



The authors gratitude for the support from the Nation Natural Science Foundation of China (No. 51273155) and the Fundamental Research Funds for the Central Universities (Nos. 2018-IB-025 and 2017-IB-007). The authors also thank Materials Research and Testing Center of WUT for the measurement of XRD and SEM.


  1. 1.
    W.W. Han, Z. Li, Y. Li, X.B. Fan, F.B. Zhang, G.L. Zhang, W.C. Peng, Front. Chem. 5, 84 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    N.R. Khalid, A. Majid, M.B. Tahir, N.A. Niaz, S. Khalid, Ceram. Int. 43, 14552 (2017)CrossRefGoogle Scholar
  3. 3.
    Y.P. Xie, Y.Q. Yang, G.S. Wang, G. Liu, J. Colloid Interface Sci. 503, 198 (2017)CrossRefPubMedGoogle Scholar
  4. 4.
    Z.J. Li, P. Luan, X.L. Zhang, Y. Qu, F. Raziq, J.S. Wang, L.Q. Jing, Nano Res. 10, 2321 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Xia, Q. Li, K.L. Lv, M. Li, Appl. Surf. Sci. 398, 81 (2017)CrossRefGoogle Scholar
  6. 6.
    L. Wang, S. Jiao, C.S. Li, Y. Qu, B.S. Wang, Res. Chem. Intermed. 44, 5455 (2018)CrossRefGoogle Scholar
  7. 7.
    X.J. Chen, F.L. Liu, B. Liu, L.H. Tian, W. Hu, Q.G. Xia, J. Hazard. Mater. 287, 126 (2015)CrossRefPubMedGoogle Scholar
  8. 8.
    Z.G. Xiong, H.Q. Dou, J.H. Pan, J.Z. Ma, C. Xu, X.S. Zhao, CrystEngComm 12, 3455 (2010)CrossRefGoogle Scholar
  9. 9.
    A.W. Morawski, M. Janus, B. Tryba, M. Toyoda, T. Tsumura, M. Inagaki, Pol. J. Chem. Technol. 11, 46 (2009)CrossRefGoogle Scholar
  10. 10.
    A. Kumar, S.K. Sharma, G. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, F.J. Stadler, J. Hazard. Mater. 364, 429 (2019)CrossRefGoogle Scholar
  11. 11.
    A. Kumar, A. Kumar, G. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, C.S. Guo, F.J. Stadler, Chem. Eng. J. 339, 393 (2018)CrossRefGoogle Scholar
  12. 12.
    A. Kumar, A. Kumar, G. Sharma, A.H. Al-Muhtaseb, M. Naushad, A.A. Ghfar, F.J. Stadler, Chem. Eng. J. 334, 462 (2018)CrossRefGoogle Scholar
  13. 13.
    H.W. Huang, X. Han, X.W. Li, S.C. Wang, P.K. Chu, Y.H. Zhang, A.C.S. Appl, Mater. Interfaces 7, 482 (2016)CrossRefGoogle Scholar
  14. 14.
    H.W. Huang, S.C. Tu, X. Du, Y.H. Zhang, J. Colloid Interface Sci. 509, 113 (2018)CrossRefPubMedGoogle Scholar
  15. 15.
    S. Singh, R. Sharma, M. Khanuja, Korean J. Chem. Eng. 35, 1955 (2018)CrossRefGoogle Scholar
  16. 16.
    Y. Bai, L.Q. Ye, T. Chen, L. Wang, X. Shi, X. Zhang, D. Chen, A.C.S. Appl, Mater. Interfaces 8, 27661 (2016)CrossRefGoogle Scholar
  17. 17.
    S.M. Sun, W.Z. Wang, L. Zhang, L. Zhou, W. Yin, M. Shang, Environ. Sci. Technol. 43, 2005 (2009)CrossRefPubMedGoogle Scholar
  18. 18.
    J. Yang, L.G. Xu, C.L. Liu, T.P. Xie, Appl. Surf. Sci. 319, 265 (2014)CrossRefGoogle Scholar
  19. 19.
    C.Y. Liu, H.G. Huang, X. Du, T.R. Zhang, N. Tian, Y.X. Guo, Y.H. Zhang, J. Phys. Chem. C 119, 17156 (2015)CrossRefGoogle Scholar
  20. 20.
    Y.N. Chen, G.Q. Zhu, M. Hojamberdiev, J.Z. Gao, R.L. Zhu, C.H. Wang, X.M. Wei, P. Liu, J. Hazard. Mater. 344, 42 (2018)CrossRefPubMedGoogle Scholar
  21. 21.
    F. Chen, Q. Yang, F.B. Yao, S.N. Wang, J. Sun, H.X. An, K.X. Yi, Y.L. Wang, Y.Y. Zhou, L.L. Wang, X.M. Li, D.B. Wang, G.M. Zeng, J. Catal. 352, 160 (2017)CrossRefGoogle Scholar
  22. 22.
    C.C. Hu, T.S. Chen, H.X. Huang, Appl. Surf. Sci. 426, 536 (2017)CrossRefGoogle Scholar
  23. 23.
    H.G. Huang, C. Zeng, K. Xiao, Y.H. Zhang, J. Colloid Interface Sci. 504, 257 (2017)CrossRefPubMedGoogle Scholar
  24. 24.
    S.H. Tu, M.L. Lu, X. Xiao, C.X. Zheng, H. Zhong, X.X. Zuo, J.M. Nan, RSC Adv. 6, 44552 (2016)CrossRefGoogle Scholar
  25. 25.
    Z.W. Seh, S.H. Liu, M. Low, S.Y. Zhang, Z.L. Liu, A. Mlayah, M.Y. Han, Adv. Mater. 24, 2310 (2012)CrossRefPubMedGoogle Scholar
  26. 26.
    P. Wang, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, J.Y. Wei, M.H. Whangbo, Angew. Chem. Int. Edit. 47, 7931 (2008)CrossRefGoogle Scholar
  27. 27.
    Y.J. Liu, C.X. Xu, Z. Zhu, J.F. Lu, A.G. Manohari, Z.L. Shi, Mater. Res. Bull. 98, 64 (2018)CrossRefGoogle Scholar
  28. 28.
    W.Y. Zhu, J.C. Liu, S.Y. Yu, Y. Zhou, X.L. Yan, J. Hazard. Mater. 318, 407 (2016)CrossRefPubMedGoogle Scholar
  29. 29.
    G.H. Jiang, R.J. Wang, X.H. Wang, X.G. Xi, R.B. Hu, Y. Zhou, S. Wang, T. Wang, W.X. Chen, A.C.S. Appl, Mater. Interfaces 4, 4440 (2012)CrossRefGoogle Scholar
  30. 30.
    N. Li, J.J. Wu, H.B. Fang, X.H. Zhang, Y.Z. Zheng, X. Tao, Appl. Surf. Sci. 448, 41 (2018)CrossRefGoogle Scholar
  31. 31.
    D. Barreca, L. Bigiani, M. Monai, G. Carraro, A. Gasparotto, C. Sada, S. Marti-Sanchez, A. Grau-Carbonell, J. Arbiol, C. Maccato, P. Fornasiero, Langmuir 34, 4568 (2018)CrossRefPubMedGoogle Scholar
  32. 32.
    Z.H. Wang, X.F. Peng, S.S. Tian, Z. Wang, Mater. Res. Bull. 104, 1 (2018)CrossRefGoogle Scholar
  33. 33.
    M. Cui, J.X. Yu, H.J. Lin, Y. Wu, L.H. Zhao, Y.M. He, Appl. Surf. Sci. 387, 912 (2016)CrossRefGoogle Scholar
  34. 34.
    X.C. Zhang, B.Q. Lu, R. Li, X.L. Li, X.Y. Gao, C.M. Fan, Sep. Purif. Technol. 154, 68 (2015)CrossRefGoogle Scholar
  35. 35.
    H. Miao, H.Q. Li, Y.M. Cui, D.L. Tao, G. Wang, Y.X. Zhou, Mater. Lett. 133, 281 (2014)CrossRefGoogle Scholar
  36. 36.
    H.J. Huang, D.Z. Li, Q. Lin, W.J. Zhang, Y. Shao, Y.B. Chen, M. Sun, X.Z. Fu, Environ. Sci. Technol. 43, 4164 (2009)CrossRefPubMedGoogle Scholar
  37. 37.
    S. Samanta, S. Khilari, D. Pradhan, R. Srivastava, ACS Sustain. Chem. Eng. 5, 2562 (2017)CrossRefGoogle Scholar
  38. 38.
    S.Q. Chen, M.Y. Zhou, T.H. Li, W. Cao, J. Mol. Liq. 272, 27 (2018)CrossRefGoogle Scholar
  39. 39.
    H. Liu, W.R. Cao, Y. Su, Y. Wang, X.H. Wang, Appl. Catal. B Environ. 111, 271 (2012)CrossRefGoogle Scholar
  40. 40.
    Z. Wu, D.B. Zeng, X.Q. Liu, C. Yu, K. Yang, M.C. Liu, Res. Chem. Intermed. 44, 5995 (2018)CrossRefGoogle Scholar
  41. 41.
    H.W. Huang, K. Xiao, Y. He, T.R. Zhang, F. Dong, X. Du, Y.H. Zhang, Appl. Catal. B Environ. 199, 75 (2016)CrossRefGoogle Scholar
  42. 42.
    C.H. Ding, L.Q. Ye, Q. Zhao, Z.G. Zhong, K.C. Liu, H.Q. Xie, K.Y. Bao, X.G. Zhang, Z.X. Huang, J. CO2 Util. 14, 135 (2016)CrossRefGoogle Scholar
  43. 43.
    S. Karmakar, B. Panda, B. Sahoo, K.L. Routray, S. Varma, D. Behera, Mat. Sci. Semicond. Process. 88, 198 (2018)CrossRefGoogle Scholar
  44. 44.
    X.Z. Yuan, H. Wang, Y. Wu, G.G. Zeng, X.H. Chen, L.J. Leng, Z.B. Wu, H. Li, Appl. Organomet. Chem. 30, 289 (2016)CrossRefGoogle Scholar
  45. 45.
    W. Zhao, C. Li, A.J. Wang, C.C. Lv, W.H. Zhu, S.P. Dou, Q. Wang, Q. Zhong, Phys. Chem. Chem. Phys. 19, 28696 (2017)CrossRefPubMedGoogle Scholar
  46. 46.
    D.F. Xu, L.L. Li, R.G. He, L.F. Qi, L.Y. Zhang, B. Cheng, Appl. Surf. Sci. 434, 620 (2018)CrossRefGoogle Scholar
  47. 47.
    M. Pirhashemi, A. Habibi-Yangjeh, J. Colloid Interface Sci. 491, 216 (2017)CrossRefGoogle Scholar
  48. 48.
    C. Zeng, Y.M. Hu, Y.X. Guo, T.R. Zhang, F. Dong, X. Du, Y.H. Zhang, H.W. Huang, Appl. Catal. B Environ. 194, 62 (2016)CrossRefGoogle Scholar
  49. 49.
    G.C. Chen, M.M. Zhu, X.W. Wei, Mater. Lett. 212, 182 (2018)CrossRefGoogle Scholar
  50. 50.
    T.Y. Wang, W. Quan, D.L. Jiang, L.L. Chen, D. Li, S.C. Meng, M. Chen, Chem. Eng. J. 300, 280 (2016)CrossRefGoogle Scholar
  51. 51.
    S.W. Zhu, Q.G. Li, F. Li, W. Cao, T.H. Li, J. Phys. Chem. Solids 92, 11 (2016)CrossRefGoogle Scholar
  52. 52.
    F. Chang, X.F. Wang, J.R. Luo, J. Wang, Y.C. Xie, B.Q. Deng, X.F. Hu, Mol. Catal. 427, 45 (2017)CrossRefGoogle Scholar
  53. 53.
    H.W. Huang, S.C. Tu, C. Zeng, T.R. Zhang, A.H. Reshak, Y.H. Zhang, Angew. Chem. Int. Edit. 56, 11860 (2017)CrossRefGoogle Scholar
  54. 54.
    H.W. Huang, X.W. Li, J.J. Wang, F. Dong, P.K. Chu, T.R. Zhang, Y.H. Zhang, ACS Catal. 5, 4094 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Chemistry, Chemical Engineering and Life ScienceWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations