Research on Chemical Intermediates

, Volume 45, Issue 5, pp 2771–2795 | Cite as

Enhanced photocatalytic decolorization of methyl orange dye and its mineralization pathway by immobilized TiO2/polyaniline

  • N. N. BahrudinEmail author
  • M. A. Nawi
  • W. I. Nawawi


An immobilized TiO2/polyaniline (TiO2/PANI) bilayer photocatalyst was fabricated to decolorize methyl orange (MO) dye in aqueous solution. The synergistic decolorization of MO occurred via photocatalysis by TiO2 top layer and adsorption by PANI sub-layer. The fabrication of the photocatalyst was pertaining to the loading of TiO2 (0.32–2.24 mg cm−2) and PANI (0.32–1.92 mg cm−2). Increasing the loading would increase the thickness of the layer whereas an increment in the adsorption rate constant would essentially increase the synergistic photocatalytic–adsorption in the decolorization of MO. The TiO2 and PANI layer loading was optimized at 1.27 and 0.63 mg cm−2, respectively. The optimized TiO2/PANI photocatalyst removed MO dye by four and three times more effectively than the TiO2 and PANI single layer, respectively. The aeration, which supplied the dissolved oxygen, was optimized at 40 mL min−1 of flow rate. The photocatalytic degradation mechanism of MO was initiated by the demethylation followed by the aromatic ring opening and ended with a complete oxidation of the aliphatic chain to become CO2 and H2O. The TOC and IC analyses confirmed the mineralization of MO.

Graphical abstract


Decolorization Immobilized Methyl orange Mineralization pathway Polyaniline TiO2 



We would like to thank Universiti Sains Malaysia for providing the research facilities as well as Malaysian Ministry of Education for funding this research and N. N. Bahrudin via FRGS Grant (203/PKIMIA/6711228) and My Brain 15 scholarship, respectively. We would also like to express our gratitude to Dr. Ali H Jawad (UiTM Shah Alam) for his assistance in XRD analysis.


  1. 1.
    F. Marrakchi, W. Khanday, M. Asif, B. Hameed, Int. J. Biol. Macromol. 93, 1231 (2016)CrossRefPubMedGoogle Scholar
  2. 2.
    A. Hernandez-Martínez, J. Lujan-Montelongo, C. Silva-Cuevas, J.D. Mota-Morales, M. Cortez-Valadez, Á. de Jesus Ruíz-Baltazar, M. Cruz, J. Herrera-Ordonez, React. Funct. Polym. 122, 75 (2018)CrossRefGoogle Scholar
  3. 3.
    K. Nakata, A. Fujishima, J. Photochem. Photobiol. C 13, 169 (2012)CrossRefGoogle Scholar
  4. 4.
    N. Ruecha, R. Rangkupan, N. Rodthongkum, O. Chailapakul, Biosensors. Bioelectron. 52, 13 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Cheng, L. An, F. Gao, G. Wang, X. Li, X. Chen, Res. Chem. Intermed. 39, 3969 (2013)CrossRefGoogle Scholar
  6. 6.
    N. Wang, J. Li, W. Lv, J. Feng, W. Yan, RSC Adv. 5, 21132 (2015)CrossRefGoogle Scholar
  7. 7.
    A. Olad, S. Behboudi, A.A. Entezami, Bull. Mater. Sci. 35, 801 (2012)CrossRefGoogle Scholar
  8. 8.
    S. Kalikeri, N. Kamath, D.J. Gadgil, V.S. Kodialbail, Environ. Sci. Pollut. Res. 25, 3731 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Aziz, M. Sabzi, A. Fattahi, E. Arkan, J. Polym. Res. 24, 140 (2017)CrossRefGoogle Scholar
  10. 10.
    V. Gilja, K. Novaković, J. Travas Sejdic, Z. Hrnjak Murgić, M.K. Roković, M. Žic, Nanomaterials 7, 412 (2017)CrossRefPubMedCentralGoogle Scholar
  11. 11.
    M. Tanzifi, K. Karimipour, M. Najafifard, S. Mirchenari, Int. J. Eng. Trans. C. 29, 1659 (2016)Google Scholar
  12. 12.
    W. Nam, J. Kim, G. Han, Chemosphere 47, 1019 (2002)CrossRefPubMedGoogle Scholar
  13. 13.
    M. Sboui, M.F. Nsib, A. Rayes, M. Swaminathan, A. Houas, J. Environ. Sci. 60, 3 (2017)CrossRefGoogle Scholar
  14. 14.
    N.N. Bahrudin, M.A. Nawi, W.I. Nawawi, Korean J. Chem. Eng. 35, 1450 (2018)CrossRefGoogle Scholar
  15. 15.
    N.N. Bahrudin, M.A. Nawi, Korean J. Chem. Eng. 35, 1532 (2018)CrossRefGoogle Scholar
  16. 16.
    C. Nie, J. Dong, P. Sun, C. Yan, H. Wu, B. Wang, RSC Adv. 7, 36246 (2017)CrossRefGoogle Scholar
  17. 17.
    H. Zhu, R. Jiang, Y. Fu, Y. Guan, J. Yao, L. Xiao, G. Zeng, Desalination 286, 41 (2012)CrossRefGoogle Scholar
  18. 18.
    C. Baiocchi, M.C. Brussino, E. Pramauro, A.B. Prevot, L. Palmisano, G. Marcı̀, Int. J. Mass Spectrom. 214, 247 (2002)CrossRefGoogle Scholar
  19. 19.
    H. Lee, Y.-K. Park, S.-J. Kim, B.-H. Kim, H.-S. Yoon, S.-C. Jung, J. Ind. Eng. Chem. 35, 205 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Ge, C. Guo, X. Zhu, L. Ma, Z. Han, W. Hu, Y. Wang, Front. Environ. Sci. Eng. 3, 271 (2009)CrossRefGoogle Scholar
  21. 21.
    Y. He, F. Grieser, M. Ashokkumar, Ultrason. Sonochem. 18, 974 (2011)CrossRefPubMedGoogle Scholar
  22. 22.
    N.N. Bahrudin, M.A. Nawi, React. Kinet. Mech. Cat. 124, 153 (2018)CrossRefGoogle Scholar
  23. 23.
    Y.S. Ngoh, M.A. Nawi, Mater. Res. Bull. 76, 8 (2016)CrossRefGoogle Scholar
  24. 24.
    M.A. Nawi, S.M. Zain, Appl. Surf. Sci. 258, 6148 (2012)CrossRefGoogle Scholar
  25. 25.
    N.N. Bahrudin, M.A. Nawi, W.I. Nawawi, Mater. Res. Bull. 106, 388 (2018)CrossRefGoogle Scholar
  26. 26.
    Y.S. Ngoh, M.A. Nawi, Int. J. Environ. Sci. Technol. 13, 907 (2016)CrossRefGoogle Scholar
  27. 27.
    N.A. Sabri, M.A. Nawi, W.I. Nawawi, Opt. Mater. 48, 258 (2015)CrossRefGoogle Scholar
  28. 28.
    Q. Wang, J. Hui, J. Li, Y. Cai, S. Yin, F. Wang, B. Su, Appl. Surf. Sci. 283, 577 (2013)CrossRefGoogle Scholar
  29. 29.
    M.A. Nawi, S. Sabar, J. Colloid Interface Sci. 372, 80 (2012)CrossRefPubMedGoogle Scholar
  30. 30.
    A.H. Jawad, N.S.A. Mubarak, M.A.M. Ishak, K. Ismail, W.I. Nawawi, J. Taibah Univ. Sci. 10, 352 (2016)CrossRefGoogle Scholar
  31. 31.
    D. Ariyanti, M. Maillot, W. Gao, J. Env. Chem. Eng. 6, 539 (2018)CrossRefGoogle Scholar
  32. 32.
    M.A. Nawi, W.I. Nawawi, Appl. Catal. A 453, 80 (2013)CrossRefGoogle Scholar
  33. 33.
    D.H. Tseng, L.C. Juang, H.H. Huang, Int. J. Photoenergy 2012, 1 (2012)Google Scholar
  34. 34.
    W.I. Nawawi, M.A. Nawi, J. Mol. Catal. A Chem. 383, 83 (2014)CrossRefGoogle Scholar
  35. 35.
    Y.-P. Chen, S.-Y. Liu, H.-Q. Yu, H. Yin, Q.-R. Li, Chemosphere 72, 532 (2008)CrossRefPubMedGoogle Scholar
  36. 36.
    D.-R. Liu, Y.-S. Jiang, G.-M. Gao, Chemosphere 83, 1546 (2011)CrossRefGoogle Scholar
  37. 37.
    X.F. Lü, H.R. Ma, Q. Zhang, K. Du, Res. Chem. Intermed. 39, 4189 (2013)CrossRefGoogle Scholar
  38. 38.
    F. Huang, L. Chen, H. Wang, T. Feng, Z. Yan, J. Electrost. 70, 43 (2012)CrossRefGoogle Scholar
  39. 39.
    T. Chen, Y. Zheng, J.M. Lin, G. Chen, J. Am. Soc. Mass Spectrom. 19, 997 (2008)CrossRefGoogle Scholar
  40. 40.
    I.K. Konstantinou, T.A. Albanis, Appl. Catal. B 49, 1 (2004)CrossRefGoogle Scholar
  41. 41.
    R. Vinu, S.U. Akki, G. Madras, J. Hazard. Mater. 176, 765 (2010)CrossRefPubMedGoogle Scholar
  42. 42.
    M. Karkmaz, E. Puzenat, C. Guillard, J. Herrmann, Appl. Catal. B 51, 183 (2004)CrossRefGoogle Scholar
  43. 43.
    N. Gupta, B. Pal, J. Mol. Catal. A Chem. 391, 158 (2014)CrossRefGoogle Scholar
  44. 44.
    M.A. Nawi, Y.S. Ngoh, S.M. Zain, Int. J. Photoenergy 2012, 12 (2012)CrossRefGoogle Scholar
  45. 45.
    S.-A. Ong, L.-N. Ho, Y.-S. Wong, O.-M. Min, L.-S. Lai, S.-K. Khiew, V. Murali, Desalin. Water Treat. 48, 245 (2012)CrossRefGoogle Scholar
  46. 46.
    S. Hisaindee, M. Meetani, M. Rauf, TrAC Trends Anal. Chem. 49, 31 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Chemical SciencesUniversiti Sains MalaysiaMindenMalaysia
  2. 2.Photocatalysis Group, FSGUniversiti Teknologi MARAArauMalaysia
  3. 3.Department of ChemistryUniversity of YorkHeslington, YorkUK

Personalised recommendations