Research on Chemical Intermediates

, Volume 45, Issue 5, pp 2715–2726 | Cite as

Preparation of reduced graphene oxide electrodes treated by electron beam irradiation and their electrochemical behaviors

  • Ji-Hwa Hong
  • Yongju Jung
  • Seok KimEmail author


We have demonstrated the preparation of reduced graphene oxide (RGO) using a two-step synthesis by a modified Hummer’s method and borohydride reduction. To study effect of electron beam irradiation to RGO-based electrodes, the samples were prepared by changing the exposure dose of radiation. The structure and morphology analysis was performed by scanning electron microscopy, Fourier transform infra-red spectroscopy (FT-IR) and X-ray diffraction. Electrochemical properties were characterized by cyclic voltammetry and galvanostatic charge–discharge tests were performed in 6 M KOH. The maximum specific capacitance of 200 kGy RGO at a current density of 1 A/g was 273.5 F/g. The RGO electrode irradiated by electron beam with the dose of 200 kGy showed the best energy storage performance such as high capacitance and good rate capability. As a result of this study, the RGO irradiated by an electron beam showed superior capacitance than did pristine RGO.


Reduced graphene oxide Electron beam Electrochemical analysis Capacitors Modification 



This work was supported by the Individual Basic Science and Engineering Research Program through the National Research Foundation (NRF) of Korea, and funded by the MOE (Ministry of Education), Korea (Grant No. NRF-2018R1D1A1B07047857).


  1. 1.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)CrossRefGoogle Scholar
  2. 2.
    A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse, D. Aurbach, J. Mater. Chem. A 5, 12653 (2017)CrossRefGoogle Scholar
  3. 3.
    M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Science 335, 1326 (2012)CrossRefPubMedGoogle Scholar
  4. 4.
    J. Chmiola, C. Largeot, P.L. Taberna, P. Simon, Y. Gogotsi, Science 328, 480 (2010)CrossRefPubMedGoogle Scholar
  5. 5.
    J. Yang, C. Zheng, P. Xiong, Y. Li, M. Wei, J. Mater. Chem. A 2, 19005 (2014)CrossRefGoogle Scholar
  6. 6.
    Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, J. Electrochem. Soc. 162, A2567 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Sun, G. Wang, X. Li, C. Li, J. Power Sources 245, 436 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Liu, H. Kang, L. Jiao, C. Chen, K. Cao, Y. Wang, H. Yuan, Nanosclae 7, 1325 (2015)CrossRefGoogle Scholar
  9. 9.
    C. Ataca, E. Akturk, S. Ciraci, H. Ustunel, Appl. Phys. Lett. 93, 043123 (2008)CrossRefGoogle Scholar
  10. 10.
    P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, H. Wang, Elecrochim. Acta 55, 3309 (2010)CrossRefGoogle Scholar
  11. 11.
    P. Hashemi, H. Bagheri, A. Afkhami, Y.H. Ardakani, T. Madrakian, Anal. Chim. Acta 996, 10 (2017)CrossRefPubMedGoogle Scholar
  12. 12.
    H. Bagheri, N. Pajooheshpour, B. Jamali, S. Amidi, A. Hajian, H. Khoshsafar, Microchem. J. 131, 120 (2017)CrossRefGoogle Scholar
  13. 13.
    H. Zeinali, H. Bagheri, Z.M. Khoshhesab, H. Khoshsafar, A. Hajian, Mater. Sci. Eng. C 71, 386 (2017)CrossRefGoogle Scholar
  14. 14.
    J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Nano Lett. 8, 3137 (2008)CrossRefPubMedGoogle Scholar
  15. 15.
    R. Kumar, R.K. Singh, A.R. Vaz, R. Savu, S.A. Moshkalev, A.C.S. Appl, Mater. Interfaces 9, 8880 (2017)CrossRefGoogle Scholar
  16. 16.
    R. Kumar, P.K. Dubey, R.K. Singh, A.R. Vaz, S.A. Moshkalev, RSC Adv. 6, 17669 (2017)CrossRefGoogle Scholar
  17. 17.
    R. Kumar, R.K. Singh, A.K. Singh, A.R. Vaz, A.R. Vaz, C.S. Rout, S.A. Moshkalev, Appl. Surf. Sci. 416, 259 (2017)CrossRefGoogle Scholar
  18. 18.
    R. Kumar, R.K. Singh, A.R. Vaz, R.M. Yadav, C.S. Rout, S.A. Moshkalev, New J. Chem. 41, 8431 (2017)CrossRefGoogle Scholar
  19. 19.
    R. Kumar, R. Savu, E. Joanni, A.R. Vaz, M.A. Canesqui, R.K. Singh, R.A. Timm, L.T. Kubota, S.A. Moshkalev, RSC Adv. 6, 84769 (2016)CrossRefGoogle Scholar
  20. 20.
    R. Kumar, R.K. Singh, D.P. Singh, E. Joanni, R.M. Yadav, S.A. Moshkalev, Coord. Chem. Rev. 342, 34 (2017)CrossRefGoogle Scholar
  21. 21.
    R. Kumar, E. Joanni, R.K. Singh, D.P. Singh, S.A. Moshkalev, Prog. Energy Combust. Sci. 67, 115 (2018)CrossRefGoogle Scholar
  22. 22.
    R. Kumar, R.K. Singh, A.V. Alaferdov, S.A. Moshkalev, Electrochim. Acta 281, 78 (2018)CrossRefGoogle Scholar
  23. 23.
    R. Kumar, R. Savu, R.K. Singh, E. Joanni, D.P. Singh, V.S. Tiwari, A.R. Vaz, E.T.S.G. da Silva, J.R. Maluta, L.T. Kubota, S.A. Moshkalev, Carbon 117, 137 (2017)CrossRefGoogle Scholar
  24. 24.
    S. Bertolazzi, S. Bonacchi, G. Nan, A. Pershin, D. Beljonne, P. Samori, Adv. Mater. 29, 1606760 (2017)CrossRefGoogle Scholar
  25. 25.
    N. Klein-Kedem, D. Cahen, G. Hodes, Acc. Chem. Res. 49, 347 (2016)CrossRefPubMedGoogle Scholar
  26. 26.
    D. Auhl, J. Stange, H. Munstedt, Macromolecules 37, 9465 (2004)CrossRefGoogle Scholar
  27. 27.
    Y. Huang, J. Liang, Y. Chen, Small 8, 1805 (2012)CrossRefPubMedGoogle Scholar
  28. 28.
    D.E. Lobo, P.C. Baneerjee, C.D. Easton, M. Majumer, Adv. Energy Mater. 5, 1500665 (2015)CrossRefGoogle Scholar
  29. 29.
    J.M. Jung, C.H. Jung, M.S. Oh, I.T. Hwang, C.H. Jung, K.W. Shin, J.H. Hwang, S.H. Park, J.H. Choi, Mater. Lett. 126, 151 (2014)CrossRefGoogle Scholar
  30. 30.
    X. Jiang, X. Zhu, X. Liu, L. Xiao, X. Ai, H. Yang, Y. Cao, Electrochim. Acta 196, 431 (2016)CrossRefGoogle Scholar
  31. 31.
    A. Mirzaei, Y.J. Kwon, P. Wu, S.S. Kim, H.W. Kim, A.C.S. Appl, Mater. Interfaces 10, 7324 (2018)CrossRefGoogle Scholar
  32. 32.
    H.J. Moon, H. Lee, J. Kwon, Y.D. Suh, D.K. Kim, I. Ha, J. Yeo, S. Hong, S.H. Ko, Sci. Rep. 7, 41981 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Z. Wen, M.H. Yeh, H. Guo, J. Wang, Y. Zi, W. Xu, J. Deng, L. Zhu, X. Wang, Sci. Adv. 2, e1600097 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    C. Zhang, T.M. Higgins, S.H. Park, S.E. O’Brien, D. Long, J.N. Coleman, V. Nicolosi, Nano Energy 28, 495 (2016)CrossRefGoogle Scholar
  35. 35.
    H.S. Kim, Y.J. Jung, S. Kim, Carbon Lett. 23, 63 (2017)Google Scholar
  36. 36.
    J.H. Kim, S.C. Byun, S. Chung, S. Kim, Carbon Lett. 25, 14 (2018)Google Scholar
  37. 37.
    H.Y. Lee, Y. Jung, S. Kim, J. Nanosci. Nanotechnol. 16, 2692 (2016)CrossRefPubMedGoogle Scholar
  38. 38.
    D. Teweldebrhan, A.A. Balandin, Appl. Phys. Lett. 94, 013101 (2009)CrossRefGoogle Scholar
  39. 39.
    W. Gao, L.B. Alermany, L. Ci, P.M. Ajayan, Nat. Chem. 1, 403 (2009)CrossRefPubMedGoogle Scholar
  40. 40.
    K. Zhang, L. Mao, L.L. Zhang, H.S.O. Chan, X.S. Zhao, J. Wu, J. Mater. Chem. 20, 7302 (2011)CrossRefGoogle Scholar
  41. 41.
    K. Ai, Y. Liu, L. Lu, X. Cheng, L. Huo, J. Mater. Chem. 21, 3365 (2011)CrossRefGoogle Scholar
  42. 42.
    X. Chen, X. Chen, F. Zhang, Z. Yang, S. Haung, J. Power Sources 243, 555 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular EngineeringPusan National UniversityBusanRepublic of Korea
  2. 2.Department of Applied Chemical EngineeringKorea University of Technology and Education (KOREATECH)CheonanRepublic of Korea

Personalised recommendations