Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 5, pp 2695–2713 | Cite as

DFT and experimental study on denitration mechanism over VPO/TiO2 catalyst

  • Yong Jia
  • Song ZhangEmail author
  • Mingyan GuEmail author
  • Jia Hu
  • Hongming Long
  • Yihua Chen
  • Nana Shao
  • Ren Zhao
  • Jin Jiang
Article
  • 151 Downloads

Abstract

A titanium dioxide supported VPO(VPO/TiO2) catalyst for NH3-SCR de-NOx was prepared. The NH3-SCR catalytic activity of VPO/TiO2 was tested and a corresponding mechanism was investigated by Density Functional Theory and in situ FTIR spectra. The results showed that the catalytic activity of VPO/TiO2 was the highest when the molar ratio of P to V was 1/5, weight percentage of active ingredient was 10 wt.% and calcination temperature was 400 °C. The de-NOx efficiency of 0.1VP(1/5)O/TiO2 calcined at 400 °C was above 98% at temperature range from 180 to 400 °C. The V2P2O15H12 cluster was constructed and the adsorption of NO and NH3 on the active site of VPO/TiO2 was investigated by density functional theory (DFT). The simulation results showed that NO could be chemisorbed on the O2 and O3 site of the V2P2O15H12 cluster, and the corresponding adsorption energy was − 74.95 kJ·mol−1 and − 47.30 kJ·mol−1 respectively. The adsorption energy of NH3 adsorption on O1, O2 and O3 site is − 95.88 kJ·mol−1, − 230.80 kJ·mol−1 and − 78.45 kJ·mol−1. Moreover, the electric charge transformation of H on O2 site is 0.589e, which is higher than that on O1 and O3 site. Accordingly, the NH3-SCR de-NOx reaction would occur more easily on the O2 site than on the O1 and O3 site. The simulated results and the in situ FTIR spectra showed that the reduction of NO by NH3 over VPO/TiO2 followed the E–R mechanism and L–H mechanism.

Graphical abstract

Keywords

NOx VPO/TiO2 SCR DFT Mechanism 

Notes

Acknowledgements

This work was financially supported by the Major national R & D projects of China (2017YFB0601805) and National Natural Science Foundation of China (51674002).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    J. Zhang, R. Zhang, X. Chen, Ind. Eng. Chem. Res. 53(15), 6450 (2014)CrossRefGoogle Scholar
  2. 2.
    L. Kanimozhi, A. Arvind, Int. J. Eng. Sci. 2(1), 66 (2017)Google Scholar
  3. 3.
    Y. Wang, Y. Shen, S. Zhu, Catal. Commun. 94, 29 (2017)CrossRefGoogle Scholar
  4. 4.
    Y. He, M.E. Ford, M. Zhu, Appl. Catal. B 193, 141 (2016)CrossRefGoogle Scholar
  5. 5.
    Y.J. Kim, H.J. Kwon, I. Heo, Appl. Catal. B 126(38), 9 (2012)CrossRefGoogle Scholar
  6. 6.
    C. Tang, H. Zhang, L. Dong, Catal. Sci. Technol. 6(5), 1248 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Kong, Q. Liu, B. Zhu, Chem. Eng. J. 264(2), 815 (2015)CrossRefGoogle Scholar
  8. 8.
    W. Chen, J. Luo, L. Qin, J. Environ. Manag. 164, 146 (2015)CrossRefGoogle Scholar
  9. 9.
    L. Yan, Y. Liu, H. Hu, Chemcatchem 8(13), 2267 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Zhou, J. Chen, M. Zhou, Appl. Therm. Eng. 115, 378 (2016)CrossRefGoogle Scholar
  11. 11.
    X. Liu, J. Li, X. Li, Chin. J. Catal. 37(6), 878 (2016)CrossRefGoogle Scholar
  12. 12.
    L. Gan, F. Guo, J. Yu, Catalysts 6(2), 25 (2016)CrossRefGoogle Scholar
  13. 13.
    W. Cha, S.H. Ehrman, J. Jurng, J. Environ. Chem. Eng. 4(1), 556 (2016)CrossRefGoogle Scholar
  14. 14.
    C.L. Yu, B.C. Huang, L.F. Dong, Catal. Today 281, 610 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Schneider, M. Maciejewski, K. Kohler, J. Catal. 157, 312 (1995)CrossRefGoogle Scholar
  16. 16.
    G. Ramis, L. Yi, G. Busca, Catal. Today 28(4), 373 (1996)CrossRefGoogle Scholar
  17. 17.
    C. Santra, S. Shah, A. Mondal, Micropor. Mesopor. Mater. 223, 121 (2016)CrossRefGoogle Scholar
  18. 18.
    L. Arnarson, H. Falsig, S.B. Rasmussen, Phys. Chem. Chem. Phys. 18(25), 17071 (2016)CrossRefPubMedGoogle Scholar
  19. 19.
    M. Gruber, K. Hermann, J. Chem. Phys. 139(24), 194701 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Calatayud, B. Mguig, Surf. Sci. Rep. 55(6), 169 (2004)Google Scholar
  21. 21.
    A. Vittadini, M. Casarin, M. Sambi, J. Phys. Chem. B 109(46), 21766 (2005)CrossRefPubMedGoogle Scholar
  22. 22.
    G. Busca, G. Centi, F. Trifiro, J. Phys. Chem. 90(7), 1337 (1986)CrossRefGoogle Scholar
  23. 23.
    G.C. Bond, S.F. Tahir, Appl. Catal. 71(1), 1 (1991)CrossRefGoogle Scholar
  24. 24.
    J.B. Benziger, V. Guliants, S. Sundaresan, Catal. Today 33(1–3), 49 (1997)CrossRefGoogle Scholar
  25. 25.
    X. Feng, Y. Yao, S. Qin, Appl. Catal. B 164(164), 31 (2015)CrossRefGoogle Scholar
  26. 26.
    M. HaVecker, A. Knop-Gericke, R.W. Mayer, J. Electron. Spectrosc. 125(2), 79 (2002)CrossRefGoogle Scholar
  27. 27.
    A.W. Sleight, P.T. Nguyen, Mater. Res. Bull. 30(9), 1055 (1995)CrossRefGoogle Scholar
  28. 28.
    T. Okuhara, M. Misono, Catal. Today 16(1), 61 (1993)CrossRefGoogle Scholar
  29. 29.
    J.W. Johnson, D.C. Johnston, A.J. Jacobson, Stud. Surf. Sci. Catal. 31, 181 (1987)CrossRefGoogle Scholar
  30. 30.
    Z. Yan, Z. Zuo, Z. Li, Appl. Surf. Sci. 321, 339 (2014)CrossRefGoogle Scholar
  31. 31.
    J.P. Perdew, Y. Wang, Phys. Rev. B Condens. Matter Mater. Phys. 45(23), 13244 (1992)CrossRefGoogle Scholar
  32. 32.
    J.G. Yu, J.C. Yu, B. Cheng, J. Solid State Chem. 174(2), 372 (2003)CrossRefGoogle Scholar
  33. 33.
    S. Damyanova, C.A. Perez, M. Schmal, Appl. Catal. A Gen. 234(1–2), 271 (2002)Google Scholar
  34. 34.
    J.P. Chen, R.T. Yang, J. Catal. 139(1), 277 (1993)CrossRefGoogle Scholar
  35. 35.
    T. Tsumuraya, T. Shishidou, T. Oguchi, J. Alloys Compd. 446(5), 323 (2007)CrossRefGoogle Scholar
  36. 36.
    X. Duan, G. Qian, C. Fan, Surf. Sci. 606(3–4), 549 (2012)CrossRefGoogle Scholar
  37. 37.
    M. Takagikawai, M. Soma, T. Onishi, Can. J. Chem. 58(20), 2132 (2011)CrossRefGoogle Scholar
  38. 38.
    M. Takagi, T. Kawai, M. Soma, J. Catal. 50(3), 441 (1977)CrossRefGoogle Scholar
  39. 39.
    V.I. Pârvulescu, P. Grange, B. Delmon, Catal. Today 46(4), 233 (1998)CrossRefGoogle Scholar
  40. 40.
    H. Demir, A. Top, D. Balköse, J. Hazard. Mater. 153(1–2), 389 (2008)CrossRefPubMedGoogle Scholar
  41. 41.
    M. Inomata, A. Miyamoto, Y. Murakami, J. Catal. 62(1), 140 (1980)CrossRefGoogle Scholar
  42. 42.
    C.U.I. Odenbrand, L.A.H. Andersson, J.G.M. Brandin, Appl. Catal. 27(2), 363 (1986)CrossRefGoogle Scholar
  43. 43.
    M. Gasior, J. Haber, T. Machej, J. Mol. Catal. 43(3), 359 (1988)CrossRefGoogle Scholar
  44. 44.
    K.I. Hadjiivanov, Catal. Rev. 42(1–2), 71 (2000)CrossRefGoogle Scholar
  45. 45.
    M.A. Centeno, I. Carrizosa, J.A. Odriozola, Appl. Catal. B Environ. 29(4), 307 (2001)CrossRefGoogle Scholar
  46. 46.
    V.I. Parvulescu, S. Boghosiam, V. Parvulescu, S.M. Jung, J. Catal. 217(1), 172 (2003)Google Scholar
  47. 47.
    L. Chen, J. Li, M. Ge, Environ. Sci. Technol. 44(24), 9590 (2010)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Energy and EnvironmentAnhui University of TechnologyMa’anshanChina
  2. 2.Key Laboratory of Metallurgical Emission Reduction and Resources Recycling, Ministry of EducationAnhui University of TechnologyMa’anshanChina
  3. 3.Anhui Xinchuang Energy and Environmental Protection Science and Technology Co. LTD.Ma’anshanChina

Personalised recommendations