Advertisement

Research on Chemical Intermediates

, Volume 45, Issue 5, pp 2587–2603 | Cite as

The improved photocatalytic capacity derived from AgI-modified mesoporous PANI spherical shell with open pores

  • Xueting Liu
  • Hongcheng Zhu
  • Jingjing Wu
  • Fang Wang
  • Fengyu WeiEmail author
Article
  • 27 Downloads

Abstract

Sulfonated polystyrene microspheres have been used as a template to produce a mesoporous polyaniline (M-PANI) spherical shell with open pores, based on which a novel visible-light-active AgI-modified M-PANI@AgI composite was prepared by a chemisorption method. The photocatalytic activity of M-PANI@AgI was significantly enhanced as compared to conventional PANI@AgI, and it increased with the increasing proportion of M-PANI. Superior stability was also observed in the cyclic runs, indicating that the as-prepared composite is highly desirable for the remediation of organic contaminated wastewaters. The improved photocatalytic performance is due to synergistic effects derived from the AgI-modified mesoporous PANI spherical shell with open pores, which can effectively accelerate the charge separation and reinforce the photostability of the composite. In addition, based on active species trapping experiments, a possible mechanism has been proposed.

Graphical abstract

Keywords

Microspheres Polyaniline AgI Photocatalysis Synergism 

Notes

Acknowledgements

Financial support was by the Anhui Provincial Natural Science Foundation (No. 1508085MB28) and the National Natural Science Foundation of China (Grant No. 51372062).

References

  1. 1.
    C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39, 4206 (2010)CrossRefGoogle Scholar
  2. 2.
    Z. Guan, G. Kim, W. Choi, Energ. Environ. Sci. 7, 954 (2014)CrossRefGoogle Scholar
  3. 3.
    S. Kim, J. Yeo, W. Choi, Appl. Catal. B Environ. 84, 148 (2008)CrossRefGoogle Scholar
  4. 4.
    X. Li, Y. Huang, J.F. Chen, X. Tao, Catal. Commun. 20, 94 (2012)CrossRefGoogle Scholar
  5. 5.
    L. Zhang, D. Jing, X. She, H. Liu, D. Yang, Y. Lu, J. Li, Z. Zheng, L. Guo, J. Mater. Chem. 2, 2071 (2013)CrossRefGoogle Scholar
  6. 6.
    M. Mikkelsen, Energ. Environ. Sci. 3, 43 (2010)CrossRefGoogle Scholar
  7. 7.
    F. Sastre, A.V. Puga, L. Liu, A. Corma, H. García, J. Am. Chem. Soc. 136, 6798 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Cong, M. Chen, T. Xu, Y. Zhang, Q. Wang, Appl. Catal. B Environ. 147, 733 (2014)CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, S. Jiang, W. Song, P. Zhou, H. Ji, W. Ma, W. Hao, C. Chen, J. Zhao, Energ. Environ. Sci. 8, 1231 (2015)CrossRefGoogle Scholar
  10. 10.
    Y.P. Yuan, S.W. Cao, Y.S. Liao, L.S. Yin, C. Xue, Appl. Catal. B Environ. 140–141, 164 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, Appl. Catal. B Environ. 125, 331 (2012)CrossRefGoogle Scholar
  12. 12.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789 (1995)CrossRefGoogle Scholar
  13. 13.
    Z. Zhang, R. Zong, J. Zhao, Y. Zhu, Environ. Sci. Technol. 42, 3803 (2008)CrossRefGoogle Scholar
  14. 14.
    J. Wang, W. Jiang, L. Di, W. Zhen, Y. Zhu, Appl. Catal. B Environ. 176–177, 306 (2015)CrossRefGoogle Scholar
  15. 15.
    B.Y. Xia, H.B. Wu, J.S. Chen, Z. Wang, X. Wang, X.W. Lou, Phys. Chem. Chem. Phys. 14, 473 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Nandi, R. Gangopadhyay, A. Bhaumik, Microporous Mesoporous Mater. 109, 239 (2008)CrossRefGoogle Scholar
  17. 17.
    H. Yu, L. Xu, P. Wang, X. Wang, J. Yu, Appl. Catal. B Environ. 144, 75 (2014)CrossRefGoogle Scholar
  18. 18.
    W. Zhao, G. Yang, S. Wang, H. He, C. Sun, S. Yang, Appl. Catal. B Environ. 165, 335 (2015)CrossRefGoogle Scholar
  19. 19.
    A.J. Paine, Macromolecules 23, 157 (2002)Google Scholar
  20. 20.
    W. Wu, S. Liang, L. Shen, Z. Ding, H. Zheng, W. Su, J. Alloy. Compd. 520, 213 (2012)CrossRefGoogle Scholar
  21. 21.
    H. Cheng, W. Wang, B. Huang, Z. Wang, J. Zhan, X. Qin, X. Zhang, Y. Dai, J. Mater. Chem. A 1, 7131 (2013)CrossRefGoogle Scholar
  22. 22.
    Z. Yang, D. Li, J. Rong, W. Yan, Z. Niu, Macromol. Mater. Eng. 287, 627 (2002)CrossRefGoogle Scholar
  23. 23.
    X. Wang, J.C. Yu, C. Ho, Y. Hou, X. Fu, Langmuir 21, 2552 (2005)CrossRefGoogle Scholar
  24. 24.
    Y. Xu, H. Xu, J. Yan, H. Li, L. Huang, J. Xia, S. Yin, H. Shu, Colloid. Surf. A 436, 474 (2013)CrossRefGoogle Scholar
  25. 25.
    G. Liao, S. Chen, X. Quan, Y. Zhang, H. Zhao, Appl. Catal. B Environ. 102, 126 (2011)CrossRefGoogle Scholar
  26. 26.
    S.V. Awate, R.K. Sahu, M.D. Kadgaonkar, R. Kumar, N.M. Gupta, Catal. Today 141, 144 (2009)CrossRefGoogle Scholar
  27. 27.
    N.S. And, S. Vasudevan, J. Phys. Chem. B 108, 11585 (2004)CrossRefGoogle Scholar
  28. 28.
    K. He, M. Li, L. Guo, Int. J. Hydrogen Energ. 37, 755 (2012)CrossRefGoogle Scholar
  29. 29.
    H. Zhang, R. Zong, Y. Zhu, J. Phys. Chem. C 113, 4605 (2014)CrossRefGoogle Scholar
  30. 30.
    C. Hu, X. Hu, L. Wang, J. Qu, A. Wang, Environ. Sci. Technol. 40, 7903 (2006)CrossRefGoogle Scholar
  31. 31.
    Y. Zhang, Z.R. Tang, X. Fu, Y.J. Xu, Appl. Catal.B Environ. 106, 445 (2011)CrossRefGoogle Scholar
  32. 32.
    C. Liang, K. Terabe, T. Tsuruoka, M. Osada, T. Hasegawa, M. Aono, Adv. Funct. Mater. 17, 1466 (2007)CrossRefGoogle Scholar
  33. 33.
    Y. Xu, S. Huang, H. Ji, L. Jing, M. He, H. Xu, Q. Zhang, H. Li, RSC Adv. 6, 6905 (2016)CrossRefGoogle Scholar
  34. 34.
    M.T. Greiner, M.G. Helander, W.M. Tang, Z.B. Wang, J. Qiu, Nat. Mater. 11, 76 (2012)CrossRefGoogle Scholar
  35. 35.
    N. Wang, J. Li, W. Lv, J. Feng, W. Yan, RSC Adv. 5, 21132 (2015)CrossRefGoogle Scholar
  36. 36.
    R. Mohini, N. Lakshminarasimhan, Mater. Res. Bull. 76, 370 (2016)CrossRefGoogle Scholar
  37. 37.
    P. Zhao, D.S. Liu, Y. Zhang, Y. Su, H.Y. Liu, S.J. Li, G. Chen, J. Phys. Chem. C 116, 7968 (2012)CrossRefGoogle Scholar
  38. 38.
    G.K.R. Senadeera, T. Kitamura, Y. Wada, S. Yanagida, J. Photoch. Photobio. A 164, 61 (2004)CrossRefGoogle Scholar
  39. 39.
    Q. Chen, Q. He, M. Lv, Y. Xu, H. Yang, X. Liu, F. Wei, Appl. Surf. Sci. 327, 77 (2015)CrossRefGoogle Scholar
  40. 40.
    D. Chen, Z. Jiang, J. Geng, A. Qun Wang, D. Yang, Ind. Eng. Chem. Res. 46, 2741 (2007)CrossRefGoogle Scholar
  41. 41.
    P. Xiong, Q. Chen, M. He, X. Sun, X. Wang, J. Mater. Chem. 22, 17485 (2012)CrossRefGoogle Scholar
  42. 42.
    X. Pan, L. Wang, X. Sun, X. Binhai, W. Xin, Ind. Eng. Chem. Res. 52, 10105 (2013)CrossRefGoogle Scholar
  43. 43.
    Q. Chen, Q. He, M. Lv, X. Liu, J. Wang, J. Lv, Appl. Surf. Sci. 311, 230 (2014)CrossRefGoogle Scholar
  44. 44.
    L. Mohapatra, K. Parida, M. Satpathy, J. Phys. Chem. C 116, 13063 (2012)CrossRefGoogle Scholar
  45. 45.
    L. Zhang, M. Wan, J. Phys. Chem. B 107, 6748 (2003)CrossRefGoogle Scholar
  46. 46.
    J.O.M. Bockris, J. Bard, R. Faulkner, J. Electroanal. Chem. 125, 255 (1981)CrossRefGoogle Scholar
  47. 47.
    J. Ma, Q. Liu, L. Zhu, Z. Jing, W. Kai, M. Yang, Appl. Catal. B Environ. 182, 26 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Xueting Liu
    • 1
  • Hongcheng Zhu
    • 1
  • Jingjing Wu
    • 1
  • Fang Wang
    • 1
  • Fengyu Wei
    • 1
    Email author
  1. 1.School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Controllable Chemical Reaction and Material Chemical EngineeringHefei University of TechnologyHefeiChina

Personalised recommendations