Advertisement

Sunlight-induced photocatalytic degradation of acetaminophen over efficient carbon doped TiO2 (CTiO2) nanoparticles

  • Yasser A. ShabanEmail author
  • Hasna M. Fallata
Article
  • 11 Downloads

Abstract

Carbon doped titanium oxide (CTiO2) photocatalyst was successfully synthesized by the sol–gel method. The crystal structure, surface morphology, and optical properties of CTiO2 have been characterized by X-ray diffraction, Brunauer–Emmett–Teller surface area (SBET), scanning electron microscope, UV–Vis, X-ray spectroscopy (EDS), Fourier transform infrared and X-ray photoelectron spectroscopy. The photocatalytic degradation of acetaminophen (AMP) in aqueous solution, seawater, and polluted seawater has been investigated by using the synthesized photocatalyst under irradiation of UV and natural sunlight. The effectiveness of CTiO2 compared to pure TiO2 toward the photocatalytic removal of AMP was significantly observed. The optimized conditions including catalyst dose, initial concentration of AMP and solution pH were also studied for effective photocatalytic removal. The highest degradation rate was obtained when 2.0 g L−1 of the catalyst was used at pH 7. The kinetic results revealed that the photocatalytic degradation of AMP using CTiO2 obeyed a pseudo-first-order reaction kinetics.

Keywords

Acetaminophen Photocatalytic degradation CTiO2 Nanoparticles Seawater Sunlight 

Notes

Acknowledgements

The authors would like to thank Mr. Mosa Alzobidi and Dr. Yasar N. K. for their appreciable help in the experimental analysis.

Supplementary material

11164_2019_3750_MOESM1_ESM.docx (612 kb)
Supplementary material 1 (DOCX 611 kb)

References

  1. 1.
    T. Schwartz, W. Kohnen, B. Jansen, U. Obst, FEMS Microbiol. Ecol. 43, 325 (2003)CrossRefGoogle Scholar
  2. 2.
    F. Baquero, J.L. Martínez, R. Cantón, Curr. Opin. Biotechnol. 19, 260 (2008)CrossRefGoogle Scholar
  3. 3.
    L. Yang, L.E. Yua, M.B. Ray, Water Res. 42, 3480 (2008)CrossRefGoogle Scholar
  4. 4.
    S.C. Antunes, R. Freitas, E. Figuerira, F. Goncalves, B. Nunes, Eniviron. Sci. Pollut. Res. 20, 6658 (2013)CrossRefGoogle Scholar
  5. 5.
    T.H. Heberer, K. Reddersen, A. Mechlinski, Water Sci. Technol. 46, 1 (2002)CrossRefGoogle Scholar
  6. 6.
    A. Nikolaou, S. Meric, D. Fatta, Anal. Bioanal. Chem. 387, 1225 (2007)CrossRefGoogle Scholar
  7. 7.
    T. Ternes, Water Res. 32, 324 (1998)CrossRefGoogle Scholar
  8. 8.
    D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton, Environ. Sci. Technol. 36, 1202 (2002)CrossRefGoogle Scholar
  9. 9.
    P.H. Roberts, K.V. Thomas, Sci. Total Environ. 356, 143 (2006)CrossRefGoogle Scholar
  10. 10.
    M. Carballa, F. Omil, J.M. Lema, M. Llompart, C. Garcia, I. Rodriguez, M. Gomez, T. Ternes, Water Sci. Technol. 52(8), 29 (2005)CrossRefGoogle Scholar
  11. 11.
    M. Petrovic, M.D. Hernando, M.S. Díaz-Cruz, D. Barceló, J. Chromatogr. 1067(1–2), 1 (2005)CrossRefGoogle Scholar
  12. 12.
    J. Radjenovic, M. Petrovic, D. Barcelo, Anal. Bioanal. Chem. 387(4), 1365 (2007)CrossRefGoogle Scholar
  13. 13.
    K. Govindan, S. Murugesan, P. Maruthamuthu, Mater. Res. Bull. 48, 1913 (2013)CrossRefGoogle Scholar
  14. 14.
    Y.A. Shaban, M.A. El Sayed, A.A. El Maradny, R.K. Al Farawati, M.I. Al Zobidi, Chemosphere 91, 307 (2013)CrossRefGoogle Scholar
  15. 15.
    N.H. Nguyen, H. Bai, J. Environ. Sci. 26, 1180 (2014)CrossRefGoogle Scholar
  16. 16.
    L. Szatmáry, J. Subrt, V. Kalousek, J. Mosinger, K. Lang, Catal. Today 230, 74 (2014)CrossRefGoogle Scholar
  17. 17.
    B. Cojocaru, V. Andrei, M. Tudorache, F. Lin, C. Cadigan, R. Richards, V.I. Parvulescu, Catal. Today 284, 153 (2017)CrossRefGoogle Scholar
  18. 18.
    K.A. Gebru, C. Das, J. Water Process Eng. 16, 1 (2017)CrossRefGoogle Scholar
  19. 19.
    P. Shao, J. Tian, W. Shi, S. Gao, F. Cui, J. Mater. Chem. A 3, 19913 (2015)CrossRefGoogle Scholar
  20. 20.
    P. Shao, J. Tian, Z. Zhao, W. Shi, S. Gao, F. Cui, Appl. Surf. Sci. 324, 35 (2015)CrossRefGoogle Scholar
  21. 21.
    Y.N. Kavil, Y.A. Shaban, R.K. Al Farawati, M.I. Orif, M. Zobidi, S.U.M. Khan, Photochem. Photobiol. A: Chem. 327, 244 (2017)CrossRefGoogle Scholar
  22. 22.
    Y. Yang, Y. Li, J. Wang, J. Wu, D. He, Q. An, J. Alloys Compd. 699, 47 (2017)CrossRefGoogle Scholar
  23. 23.
    S.U.M. Khan, M. Al-Shahry, W.B. Ingler Jr., Science 297, 2243 (2002)CrossRefGoogle Scholar
  24. 24.
    Y. Fang, M. Sun, Y. Wang, S. Sun, J. He, Mater. Res. Bull. 74, 265 (2016)CrossRefGoogle Scholar
  25. 25.
    K.M. Reddy, B. Baruwati, M. Jayalakshmi, M. MohanRao, S.V. Manorama, J. Solid State Chem. 178, 3352 (2005)CrossRefGoogle Scholar
  26. 26.
    L. Hexing, L. Jingxia, H. Yuning, J. Phys. Chem. B 110(4), 1559 (2006)CrossRefGoogle Scholar
  27. 27.
    K.M. Rajesh, S. Sugunan, J. Appl. Chem. 2(2), 36 (2012)Google Scholar
  28. 28.
    R. Gomez, T. Lopez, E. Ortiz-Islas, J. Navrrete, E. Sanchez, F. Tzompantzi, X. Bokhimi, J. Mol. Catal. A: Chem. 193, 217 (2003)CrossRefGoogle Scholar
  29. 29.
    F. Galindo, R. Gomez, M. Aguilar, J. Mol. Catal. A: Chem. 281, 119 (2008)CrossRefGoogle Scholar
  30. 30.
    R.K. Manoharan, S. Sankaran, Environ. Sci. Pollut. Res. 25, 20510 (2018)CrossRefGoogle Scholar
  31. 31.
    P. Kubelka, J. Opt. Soc. Am. 38, 448 (1948)CrossRefGoogle Scholar
  32. 32.
    T. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15, 627 (1966)CrossRefGoogle Scholar
  33. 33.
    Nie, X., Sohlberg, K.: Materials Research Society Symposium Proceedings on Materials and Technology for Hydrogen Economy, 1–5 December meeting, Boston, MA, pp. 801, 205 (2003)Google Scholar
  34. 34.
    Y. Nakano, T. Morikawa, T. Ohwaki, Y. Taga, Appl. Phys. Lett. 87, 052111 (2005)CrossRefGoogle Scholar
  35. 35.
    D. Dolat, N. Quici, E.K. Nejman, A.W. Morawski, G.L. Puma, Appl. Catal. B: Environ. 115–116, 81 (2012)CrossRefGoogle Scholar
  36. 36.
    Z. Zhang, Z. Huang, X. Cheng, Q. Wang, Y. Chen, P. Dong, X. Zhang, Appl. Surf. Sci. 355, 45 (2015)CrossRefGoogle Scholar
  37. 37.
    C. Randorn, S. Wongnawa, P. Boonsin, Sci Asia 30, 149 (2004)CrossRefGoogle Scholar
  38. 38.
    S. Abbasizadeh, A.R. Keshtkar, M.A. Mousavian, Chem. Eng. J. 220, 161 (2013)CrossRefGoogle Scholar
  39. 39.
    G. Zhang, Y.C. Zhang, M. Nadagouda, C.H. Han, K. O’Shea, S.M. El-Sheikh, A.A. Ismail, D.D. Dionysiou, Appl Catal B: Environ. 144, 614 (2014)CrossRefGoogle Scholar
  40. 40.
    J.G. Yu, G.H. Wang, B. Cheng, M. Zhou, Appl. Catal. B Environ. 69, 171 (2007)CrossRefGoogle Scholar
  41. 41.
    P. Du, A. Bueno-López, M. Verbaas, A.R. Almeida, M. Makkee, J.A. Moulijn, G. Mul, J. Catal. 260, 75 (2008)CrossRefGoogle Scholar
  42. 42.
    Y.H. Ao, J.J. Xu, D.G. Fu, Appl. Surf. Sci. 256, 239 (2009)CrossRefGoogle Scholar
  43. 43.
    Y. Sakatani, H. Ando, K. Okusako, H. Koike, J. Nunoshige, T. Takata, J.N. Kondo, M. Hara, K. Domen, J. Mater. Res. 19, 2100 (2004)CrossRefGoogle Scholar
  44. 44.
    Y.G. Tao, Y.Q. Xu, J. Pan, H. Gu, C.Y. Qin, P. Zhou, Mater. Sci. Eng. 177, 1664 (2012)CrossRefGoogle Scholar
  45. 45.
    S.M. El-Sheikh, G. Zhang, H.M. El-Hosainy, A.A. Ismail, K.E. O’Shea, P. Falaras, A.G. Kontos, D.D. Dionysiou, J. Hazard. Mater. 280, 723 (2014)CrossRefGoogle Scholar
  46. 46.
    X. Guo, D. Mao, G. Lu, S. Wang, G. Wu, J. Mol. Catal. A: Chem. 345, 60 (2011)CrossRefGoogle Scholar
  47. 47.
    V. Etacheri, M. Seery, S. Hinder, G. Michlits, S.A. Pillai, A.C.S. Appl, Mater. Interfaces 5, 1663 (2013)CrossRefGoogle Scholar
  48. 48.
    X.F. Lei, X.X. Xue, H. Yang, C. Chen, X. Li, M.C. Niu, X.Y. Gao, Y.T. Yang, Appl. Surf. Sci. 332, 172 (2015)CrossRefGoogle Scholar
  49. 49.
    B. Neppolian, S.R. Kanel, H.C. Choi, M.V. Shankar, B. Arabindoo, V. Murugesan, Int. J. Photoenergy 5, 45 (2003)CrossRefGoogle Scholar
  50. 50.
    S. Senthilvelan, V.L. Chandraboss, B. Karthikeyan, L. Natanapatham, M. Murugavelu, Mater. Sci. Semicond. Process. 16, 185 (2013)CrossRefGoogle Scholar
  51. 51.
    L. Karimi, S. Zohoori, M.E. Yazdanshenas, J. Saudi Chem. Soc. 18, 581 (2014)CrossRefGoogle Scholar
  52. 52.
    X. Zhang, F. Wu, X. Wu, P. Chen, N. Deng, J. Hazard. Mater. 157, 300 (2008)CrossRefGoogle Scholar
  53. 53.
    S. Liu, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 132, 11914 (2010)CrossRefGoogle Scholar
  54. 54.
    B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo, V. Murugesan, J. Hazard. Mater. 89, 303 (2002)CrossRefGoogle Scholar
  55. 55.
    F.D. Mai, C.S. Lu, C.W. Wu, C.H. Huang, J.Y. Chen, C.C. Chen, Sep. Purif. Technol. 62, 423 (2008)CrossRefGoogle Scholar
  56. 56.
    H. Seshadri, S. Chitra, K. Paramasivan, P.K. Sinha, Desalination 232, 139 (2008)CrossRefGoogle Scholar
  57. 57.
    H.R. Pouretedal, A. Norozi, M.H. Keshavarz, A. Semnani, J. Hazard. Mater. 162, 674 (2009)CrossRefGoogle Scholar
  58. 58.
    J. Liu, L. Han, H. Ma, H. Tian, J. Yang, Q. Zhang, B.J. Seligmann, S. Wang, J. Liu, Sci. Bull. 61, 1543 (2016)CrossRefGoogle Scholar
  59. 59.
    S. Sohrabnezhad, A. Pourahmad, E. Radaee, J. Hazard. Mater. 170, 184 (2009)CrossRefGoogle Scholar
  60. 60.
    F. Li, S. Sun, Y. Jiang, M. Xia, M. Sun, B. Xue, J. Hazard. Mater. 152, 1037 (2008)CrossRefGoogle Scholar
  61. 61.
    H.Y. He, J.F. Huang, L.Y. Cao, J.P. Wu, Desalination 252, 66 (2010)CrossRefGoogle Scholar
  62. 62.
    N. Sobana, M. Swaminathan, Sep. Purif. Technol. 56, 101 (2007)CrossRefGoogle Scholar
  63. 63.
    N. Sobana, K. Selvam, M. Swaminathan, Sep. Purif. Technol. 62, 648 (2008)CrossRefGoogle Scholar
  64. 64.
    S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Desalination 261, 3 (2010)CrossRefGoogle Scholar
  65. 65.
    A.V. Petukhov, Chem. Phys. Lett. 277, 539 (1997)CrossRefGoogle Scholar
  66. 66.
    B. Bayarri, J. Gimenez, D. Curco, S. Esplugas, Catal. Today 101, 227 (2005)CrossRefGoogle Scholar
  67. 67.
    E.R. Kusvuran, A. Samil, O.M. Atanur, O. Erbatur, Appl. Catal. B 58, 211 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Marine Chemistry Department, Faculty of Marine SciencesKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.National Institute of Oceanography and FisheriesQayet Bay, AlexandriaEgypt

Personalised recommendations