Advertisement

Detailed study on reduction of hazardous Cr(VI) at acidic pH using modified montmorillonite Fe(II)-Mt under ambient conditions

  • Mirle VinuthEmail author
  • M. Madhukara Naik
  • K. Karthik
  • H. S. Bhojya Naik
  • K. H. Hemakumar
Article
  • 18 Downloads

Abstract

Contamination of groundwater and soil by high levels of hexavalent chromium directly affects the environment and human health as a serious pollutant. Remediation by reduction, i.e., Cr(VI) → Cr(III), using a variety of reducing agents and/or processes has been explored for many years. In the present study, application of Fe(II)-Montmorillonite [a dioctahedral smectite, Fe(II)-Mt] containing interlayer Fe(II) ions as an environmentally benign clay mineral for reduction of Cr(VI) in acidic pH from aqueous solution was investigated. Fe(II)-Mt was reacted at stoichiometric excess [Fe(II)-Mt: 0.32 g; Cr(VI): 1 mM, 100 mL] in K2Cr2O7 solution at pH of 5.5 and 3.0. The decrease of Cr(VI) was monitored spectrophotometrically, and the results were corrected for the anion exclusion effect, i.e., the electrostatic interaction of HCrO 4 ions with the negatively charged surface of the clay mineral. Stoichiometric reduction of Cr(VI) was achieved in short time; at pH 5.5, 20 % reduction was achieved in the first 10 min, after which the reduction proceeded gradually to consume all of the interlayer Fe(II) ions at about 6 h. On the other hand, at pH 3.0, the reaction completed in about 15 min. Moreover, Fe(II)-Mt clay mineral can be conveniently prepared and handled in large amounts, making this method feasible even for remediation of Cr(VI) contamination over large areas in real applications.

Keywords

Cr(VI) contamination Environmental remediation Cr(VI) reduction Fe(II)–montmorillonite [Fe(II)-Mt] 

Notes

Acknowledgements

M.V. acknowledges the Principal, and Board of Management NIE-IT for encouragement and support throughout this research work. The authors thank Mr. K. Chandrasekhar for help with XRD analysis, and Prof. G. U. Kulkarni at JNCASR for providing FESEM facility.

References

  1. 1.
    N. Rumki, L. Subrata, S. Bidyut, Res. Chem. Intermed. 43, 1619 (2017)CrossRefGoogle Scholar
  2. 2.
    K. Mukherjee, S. Rumpa, G. Aniruddha, S. Bidyut, Res. Chem. Intermed. 39, 2267 (2013)CrossRefGoogle Scholar
  3. 3.
    APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, vol. 3, 20th edn. (American Public Health Association, Washington, DC, 1998), p. 3Google Scholar
  4. 4.
    N. Xafenias, Y. Zhang, C.J. Banks, Int. J. Environ. Sci. Technol. 12, 2435 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Mwinyihija, Spring. Sci. Chapter-2 (2010), pp 1–20Google Scholar
  6. 6.
    S.L. Friess, Sci. Total Environ. 86, 109 (1989)CrossRefGoogle Scholar
  7. 7.
    M.E. Losi, C. Amrhein, W.T. Frankenberger Jr., Rev. Environ. Contam. Toxicol. 136, 91 (1994)CrossRefGoogle Scholar
  8. 8.
    R.A. Anderson, Regul. Toxicol. Pharmacol. 26, 35 (1997)CrossRefGoogle Scholar
  9. 9.
    C. Jun, H. Xiaoqin, X. Qingdong, T. Min, Ke Li, Z. Qianfeng, Res. Chem. Intermed. 41, 9655 (2015)CrossRefGoogle Scholar
  10. 10.
    G. Deepak, S. Varsha, S. Mika, C.S. Yogesh, Res. Chem. Intermed. 42, 7133 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Leila, O. Shahin, K. Alireza, N. Mohammadreza, R. Adel, Res. Chem. Intermed. 44, 2319 (2018)CrossRefGoogle Scholar
  12. 12.
    P. Arundhati, A.K. Paul, Microbiol. Res. 159, 347 (2004)CrossRefGoogle Scholar
  13. 13.
    E.I. Onstott, W.S. Gregory, Environ. Sci. Technol. 7, 333 (1973)CrossRefGoogle Scholar
  14. 14.
    L.E. Eary, D. Rai, Environ. Sci. Technol. 22, 972 (1988)CrossRefGoogle Scholar
  15. 15.
    B. Anirban, M.J. Thomas, Environ. Sci. Technol. 46, 5353 (2012)CrossRefGoogle Scholar
  16. 16.
    S.E. Fendorf, G.C. Li, Environ. Sci. Technol. 30, 1614 (1996)CrossRefGoogle Scholar
  17. 17.
    J.C. Seaman, P.M. Bertsch, L. Schwallie, Environ. Sci. Technol. 33, 938 (1999)CrossRefGoogle Scholar
  18. 18.
    C. Kim, Q.H. Zhou, B.L. Deng, E.C. Thornton, H.F. Xu, Environ. Sci. Technol. 35, 2219 (2001)CrossRefGoogle Scholar
  19. 19.
    V.K. Gupta, R. Kumar, A. Nayak, T.A. Saleh, M.A. Barakat, Adv. Colloid Interface Sci. 193, 24 (2013)CrossRefGoogle Scholar
  20. 20.
    R.A.K. Rao, S. Ikram, M.K. Uddin, J. Environ. Chem. Eng. 2, 1155 (2014)CrossRefGoogle Scholar
  21. 21.
    R.A.K. Rao, M. Kashifuddin, Adsorpt. Sci. Technol. 30, 127 (2012)CrossRefGoogle Scholar
  22. 22.
    R.A.K. Rao, S. Ikram, M.K. Uddin, Desalin. Water Treat. 54, 3358 (2015)CrossRefGoogle Scholar
  23. 23.
    R.A.K. Rao, F. Rehman, M. Kashifuddin, Desalin. Water Treat. 49, 136 (2012)CrossRefGoogle Scholar
  24. 24.
    N. Qin, J. Kaiqiang, C. Rui, X. Jinhua, L. Ruowen, L. Zhaohui, W. Ling, Res. Chem. Intermed. 43, 5217 (2017)CrossRefGoogle Scholar
  25. 25.
    G. Huihui, L. Jin, Z. Huining, Q. Yongxing, J. Huixia, Z. Kefeng, Res. Chem. Intermed. 44, 2123 (2018)CrossRefGoogle Scholar
  26. 26.
    E. Carlos, D. Barrera, L.-L. Violeta, B. Bryan, J. Hazard. Mater. 223, 1 (2012)Google Scholar
  27. 27.
    S. Javad, H.N. Narges, Res. Chem. Intermed. 1, 1568 (2018)Google Scholar
  28. 28.
    G. Deepak, S. Varsha, S. Mika, C.S. Yogesh, Res. Chem. Intermed. 42, 7133 (2016)CrossRefGoogle Scholar
  29. 29.
    A.A. Bakr, N.A. Sayed, T.M. Salama, I. Othman Ali, R.R. Abdel Gayed, N.A. Negm, Res. Chem. Intermed. 44, 389 (2018)CrossRefGoogle Scholar
  30. 30.
    L.N. Shi, X. Zhang, Z.L. Chen, Water Res. 45, 886 (2011)CrossRefGoogle Scholar
  31. 31.
    H.-Y. Zhu, R. Jiang, J. Yao, F.-Q. Fu, J.-B. Li, Res. Chem. Intermed. 42, 4359 (2016)CrossRefGoogle Scholar
  32. 32.
    P. Mazeyar, E. Shima, Res. Chem. Intermed. 37, 771 (2011)CrossRefGoogle Scholar
  33. 33.
    G.B. Marandi, M. Baharloui, M. Kurdtabar, L.M. Sharabian, Res. Chem. Intermed. 41, 7043 (2015)CrossRefGoogle Scholar
  34. 34.
    X. Ding, T. An, G. Li, J. Chen, G. Sheng, J. Fu, J. Zhao, Res. Chem. Intermed. 34, 67 (2008)CrossRefGoogle Scholar
  35. 35.
    W. Hamza, C. Chtara, M. Benzina, Res. Chem. Intermed. 41, 6117 (2015)CrossRefGoogle Scholar
  36. 36.
    B. Baheri, R. Ghahremani, M. Peydayesh, M. Shahverdi, T. Mohammadi, Res. Chem. Intermed. 42, 5309 (2016)CrossRefGoogle Scholar
  37. 37.
    N. Dammak, N. Fakhfakh, S. Fourmentin, M. Benzina, Res. Chem. Intermed. 41, 5475 (2015)CrossRefGoogle Scholar
  38. 38.
    J.W. Stucki, Ch. 8, in Iron Redox Processes in Smectites Handbook of Clay Science, ed. by F. Bergaya, B.K.G. Theng, G. Lagaly (Elsevier, Amsterdam, 2006)Google Scholar
  39. 39.
    J. Manjanna, Appl. Clay Sci. 43, 208 (2008)CrossRefGoogle Scholar
  40. 40.
    J. Manjanna, T. Kozaki, N. Kozai, S. Sato, J. Nucl. Sci. Technol. 44, 929 (2007)CrossRefGoogle Scholar
  41. 41.
    R. Luc, L. Van, A.G. Martin, M. Werner, Appl. Geochem. 22, 2536 (2007)CrossRefGoogle Scholar
  42. 42.
    T. Christophe, I.C. Bourg, M. Holmboe, G. Sposito, C.I. Steefel, Clays Clay Miner. 64, 374 (2016)CrossRefGoogle Scholar
  43. 43.
    I.J. Buerge, S.J. Hug, Environ. Sci. Technol. 31, 1426 (1997)CrossRefGoogle Scholar
  44. 44.
    X.-R. Xu, H.-B. Li, X.-Y. Li, J.-D. Gu, Chemosphere 57, 609 (2004)CrossRefGoogle Scholar
  45. 45.
    G. Parthasarathy, B.M. Choudary, B. Sreedhar, A.C. Kunwar, R. Srinivasan, Am. Miner. 2003, 88 (1983)Google Scholar
  46. 46.
    R.J. Knight, R.N. Sylva, J. Inorg. Nucl. Chem. 37, 779 (1975)CrossRefGoogle Scholar
  47. 47.
    J.E. Amonette, E.C. Thornton, Environ. Sci. Technol. 33, 4096 (1999)CrossRefGoogle Scholar
  48. 48.
    D. Carroll, H.C. Starkey, Clays Clay Miner. 19, 321 (1971)CrossRefGoogle Scholar
  49. 49.
    X.-R. Xu, H.-B. Li, J.-D. Gu, Chemosphere 63, 254 (2006)CrossRefGoogle Scholar
  50. 50.
    P. Venkateswaran, K. Palanivelu, Sep. Purif. Technol. 40, 279 (2004)CrossRefGoogle Scholar
  51. 51.
    M. Gheju, Decontamination of hexavalent chromium-polluted waters: significance of metallic iron technology, in Enhancing Cleanup of Environmental Pollutants, ed. by N. Anjum, S. Gill, N. Tuteja (Springer, Cham, 2017)Google Scholar
  52. 52.
    S. Wanhong, Z. Yanqing, S. Qiong, C. Lihua, W. Yanbin, L. Juanli, S. Yu, M. Huixia, Polym. Bull. 74, 1157 (2017)CrossRefGoogle Scholar
  53. 53.
    K.U. Mohammad, Chem. Eng. J. 308, 438 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Mirle Vinuth
    • 1
    Email author
  • M. Madhukara Naik
    • 2
  • K. Karthik
    • 3
  • H. S. Bhojya Naik
    • 2
  • K. H. Hemakumar
    • 4
  1. 1.Department of ChemistryNIE Institute of TechnologyMysuruIndia
  2. 2.Department of Industrial ChemistryKuvempu UniversityShankaraghattaIndia
  3. 3.School of PhysicsBharathidasan UniversityTiruchirappalliIndia
  4. 4.Department of ChemistryCambridge Institute of TechnologyBengaluruIndia

Personalised recommendations